Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Pediatr Res ; 95(5): 1346-1355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182823

ABSTRACT

BACKGROUND: Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS: We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS: A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION: We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT: Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.

2.
HLA ; 103(1): e15282, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950640

ABSTRACT

Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population.


Subject(s)
Genetics, Population , Genome-Wide Association Study , Humans , Alleles , Genotype , HLA-B Antigens , Polymorphism, Single Nucleotide
3.
Front Pharmacol ; 14: 1178715, 2023.
Article in English | MEDLINE | ID: mdl-37234706

ABSTRACT

Introduction: Research in the field of pharmacogenomics (PGx) aims to identify genetic variants that modulate response to drugs, through alterations in their pharmacokinetics (PK) or pharmacodynamics (PD). The distribution of PGx variants differs considerably among populations, and whole-genome sequencing (WGS) plays a major role as a comprehensive approach to detect both common and rare variants. This study evaluated the frequency of PGx markers in the context of the Brazilian population, using data from a population-based admixed cohort from Sao Paulo, Brazil, which includes variants from WGS of 1,171 unrelated, elderly individuals. Methods: The Stargazer tool was used to call star alleles and structural variants (SVs) from 38 pharmacogenes. Clinically relevant variants were investigated, and the predicted drug response phenotype was analyzed in combination with the medication record to assess individuals potentially at high-risk of gene-drug interaction. Results: In total, 352 unique star alleles or haplotypes were observed, of which 255 and 199 had a frequency < 0.05 and < 0.01, respectively. For star alleles with frequency > 5% (n = 97), decreased, loss-of-function and unknown function accounted for 13.4%, 8.2% and 27.8% of alleles or haplotypes, respectively. Structural variants (SVs) were identified in 35 genes for at least one individual, and occurred with frequencies >5% for CYP2D6, CYP2A6, GSTM1, and UGT2B17. Overall 98.0% of the individuals carried at least one high risk genotype-predicted phenotype in pharmacogenes with PharmGKB level of evidence 1A for drug interaction. The Electronic Health Record (EHR) Priority Result Notation and the cohort medication registry were combined to assess high-risk gene-drug interactions. In general, 42.0% of the cohort used at least one PharmGKB evidence level 1A drug, and 18.9% of individuals who used PharmGKB evidence level 1A drugs had a genotype-predicted phenotype of high-risk gene-drug interaction. Conclusion: This study described the applicability of next-generation sequencing (NGS) techniques for translating PGx variants into clinically relevant phenotypes on a large scale in the Brazilian population and explores the feasibility of systematic adoption of PGx testing in Brazil.

5.
Mol Neurobiol ; 60(7): 3758-3769, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36943625

ABSTRACT

Intellectual disability (ID) is an early onset impairment in cognitive functioning and adaptive behavior, affecting approximately 1% of the population worldwide. Extreme skewing of X-chromosome inactivation (XCI) can be associated with ID phenotypes caused by pathogenic variants in the X chromosome. We analyzed the XCI pattern in blood samples of 194 women with idiopathic ID, using the androgen receptor gene (AR) methylation assay. Among the 136 patients who were informative, 11 (8%) presented with extreme or total XCI skewing (≥ 90%), which was significantly higher than expected by chance. Whole-exome data obtained from these 11 patients revealed the presence of dominant pathogenic variants in eight of them, all sporadic cases, resulting in a molecular diagnostic rate of 73% (8/11 patients). All variants were mapped to ID-related genes with dominant phenotypes: four variants in the X-linked genes DDX3X (an XCI escape gene; two cases), WDR45, and PDHA1, and four variants in the autosomal genes KCNB1, CTNNB1, YY1, and ANKRD11. Three of the autosomal genes had no obvious correlation with the observed XCI skewing. However, YY1 is a known transcriptional repressor that acts in the binding of the XIST long noncoding RNA on the inactive X chromosome, providing a mechanistic link between the pathogenic variant and the detected skewed XCI in the carrier. These data confirm that extreme XCI skewing in females with ID is highly indicative of causative X-linked pathogenic variants, and point to the possibility of identifying causative variants in autosomal genes with a XCI role.


Subject(s)
Intellectual Disability , Female , Humans , Intellectual Disability/genetics , X Chromosome Inactivation/genetics , Phenotype , Genes, X-Linked , Chromosomes , Carrier Proteins/genetics
6.
Int J Infect Dis ; 129: 207-215, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36758851

ABSTRACT

OBJECTIVES: The X-chromosome contains the largest number of immune-related genes, which play a major role in COVID-19 symptomatology and susceptibility. Here, we had a unique opportunity to investigate, for the first time, COVID-19 outcomes in six unvaccinated young Brazilian patients with Turner syndrome (TS; 45, X0), including one case of critical illness in a child aged 10 years, to evaluate their immune response according to their genetic profile. METHODS: A serological analysis of humoral immune response against SARS-CoV-2, phenotypic characterization of antiviral responses in peripheral blood mononuclear cells after stimuli, and the production of cytotoxic cytokines of T lymphocytes and natural killer cells were performed in blood samples collected from the patients with TS during the convalescence period. Whole exome sequencing was also performed. RESULTS: Our volunteers with TS showed a delayed or insufficient humoral immune response to SARS-CoV-2 (particularly immunoglobulin G) and a decrease in interferon-γ production by cluster of differentiation (CD)4+ and CD8+ T lymphocytes after stimulation with toll-like receptors 7/8 agonists. In contrast, we observed a higher cytotoxic activity in the volunteers with TS than the volunteers without TS after phorbol myristate acetate/ionomycin stimulation, particularly granzyme B and perforin by CD8+ and natural killer cells. Interestingly, two volunteers with TS carry rare genetic variants in genes that regulate type I and III interferon immunity. CONCLUSION: Following previous reports in the literature for other conditions, our data showed that patients with TS may have an impaired immune response against SARS-CoV-2. Furthermore, other medical conditions associated with TS could make them more vulnerable to COVID-19.


Subject(s)
COVID-19 , Turner Syndrome , Child , Humans , SARS-CoV-2 , Turner Syndrome/complications , Turner Syndrome/genetics , Leukocytes, Mononuclear , CD8-Positive T-Lymphocytes , Antibodies, Viral
8.
Sci Rep ; 12(1): 21240, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36481695

ABSTRACT

The inference of genetic ancestry plays an increasingly prominent role in clinical, population, and forensic genetics studies. Several genotyping strategies and analytical methodologies have been developed over the last few decades to assign individuals to specific biogeographic regions. However, despite these efforts, ancestry inference in populations with a recent history of admixture, such as those in Brazil, remains a challenge. In admixed populations, proportion and components of genetic ancestry vary on different levels: (i) between populations; (ii) between individuals of the same population, and (iii) throughout the individual's genome. The present study evaluated 1171 admixed Brazilian samples to compare the genetic ancestry inferred by tri-/tetra-hybrid admixture models and evaluated different marker sets from those with small numbers of ancestry informative markers panels (AIMs), to high-density SNPs (HDSNP) and whole-genome-sequence (WGS) data. Analyses revealed greater variation in the correlation coefficient of ancestry components within and between admixed populations, especially for minority ancestral components. We also observed positive correlation between the number of markers in the AIMs panel and HDSNP/WGS. Furthermore, the greater the number of markers, the more accurate the tri-/tetra-hybrid admixture models.


Subject(s)
Genetics, Population , Humans , Brazil , Minority Groups , Polymorphism, Single Nucleotide , South American People/genetics , Whole Genome Sequencing
9.
Immun Ageing ; 19(1): 57, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384671

ABSTRACT

BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.

10.
Front Immunol ; 13: 975918, 2022.
Article in English | MEDLINE | ID: mdl-36389712

ABSTRACT

Background: Although aging correlates with a worse prognosis for Covid-19, super elderly still unvaccinated individuals presenting mild or no symptoms have been reported worldwide. Most of the reported genetic variants responsible for increased disease susceptibility are associated with immune response, involving type I IFN immunity and modulation; HLA cluster genes; inflammasome activation; genes of interleukins; and chemokines receptors. On the other hand, little is known about the resistance mechanisms against SARS-CoV-2 infection. Here, we addressed polymorphisms in the MHC region associated with Covid-19 outcome in super elderly resilient patients as compared to younger patients with a severe outcome. Methods: SARS-CoV-2 infection was confirmed by RT-PCR test. Aiming to identify candidate genes associated with host resistance, we investigated 87 individuals older than 90 years who recovered from Covid-19 with mild symptoms or who remained asymptomatic following positive test for SARS-CoV-2 as compared to 55 individuals younger than 60 years who had a severe disease or died due to Covid-19, as well as to the general elderly population from the same city. Whole-exome sequencing and an in-depth analysis of the MHC region was performed. All samples were collected in early 2020 and before the local vaccination programs started. Results: We found that the resilient super elderly group displayed a higher frequency of some missense variants in the MUC22 gene (a member of the mucins' family) as one of the strongest signals in the MHC region as compared to the severe Covid-19 group and the general elderly control population. For example, the missense variant rs62399430 at MUC22 is two times more frequent among the resilient super elderly (p = 0.00002, OR = 2.24). Conclusion: Since the pro-inflammatory basal state in the elderly may enhance the susceptibility to severe Covid-19, we hypothesized that MUC22 might play an important protective role against severe Covid-19, by reducing overactive immune responses in the senior population.


Subject(s)
COVID-19 , Aged , Humans , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/genetics , Genes, MHC Class II , HLA-A Antigens , SARS-CoV-2/genetics
11.
Front Med (Lausanne) ; 9: 1008585, 2022.
Article in English | MEDLINE | ID: mdl-36250103

ABSTRACT

Background: The influence of the host genome on coronavirus disease 2019 (COVID-19) susceptibility and severity is supported by reports on monozygotic (MZ) twins where both were infected simultaneously with similar disease outcomes, including several who died due to the SARS-CoV-2 infection within days apart. However, successive exposures to pathogens throughout life along with other environmental factors make the immune response unique for each individual, even among MZ twins. Case presentation and methods: Here we report a case of a young adult monozygotic twin pair, who caught attention since both presented simultaneously severe COVID-19 with the need for oxygen support despite age and good health conditions. One of the twins, who spent more time hospitalized, reported symptoms of long-COVID even 7 months after infection. Immune cell profile and specific responses to SARS-CoV-2 were evaluated as well as whole exome sequencing. Conclusion: Although the MZ twin brothers shared the same genetic mutations which may be associated with their increased risk of developing severe COVID-19, their clinical progression was different, reinforcing the role of both immune response and genetics in the COVID-19 presentation and course. Besides, post-COVID syndrome was observed in one of them, corroborating an association between the duration of hospitalization and the occurrence of long-COVID symptoms.

12.
Front Genet ; 13: 858396, 2022.
Article in English | MEDLINE | ID: mdl-35495172

ABSTRACT

The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.

14.
Nat Commun ; 13(1): 1004, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246524

ABSTRACT

As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS.


Subject(s)
Genomics , Metagenomics , Aged , Brazil/epidemiology , Genome, Human/genetics , Genomics/methods , Humans , Polymorphism, Single Nucleotide , Whole Genome Sequencing
15.
Open Biol ; 12(2): 210240, 2022 02.
Article in English | MEDLINE | ID: mdl-35104433

ABSTRACT

Recurrence of COVID-19 in recovered patients has been increasingly reported. However, the immune mechanisms behind the recurrence have not been thoroughly investigated. The presence of neutralizing antibodies (nAbs) in recurrence/reinfection cases suggests that other types of immune response are involved in protection against recurrence. Here, we investigated the innate type I/III interferon (IFN) response, binding and nAb assays and T-cell responses to severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) with IFN gamma (IFNγ) enzyme-linked spot assay (ELISPOT) in three pairs of young adult monozygotic (MZ) twins with previous confirmed COVID-19, one of them presenting a severe recurrence four months after the initial infection. Twin studies have been of paramount importance to comprehend the immunogenetics of infectious diseases. Each MZ twin pair was previously exposed to SARS-CoV-2, as seen by clinical reports. The six individuals presented similar overall recovered immune responses except for the recurrence case, who presented a drastically reduced number of recognized SARS-CoV-2 T-cell epitopes on ELISPOT as compared to her twin sister and the other twin pairs. Our results suggest that the lack of a broad T-cell response to initial infection may have led to recurrence, emphasizing that an effective SARS-CoV-2-specific T-cell immune response is key for complete viral control and avoidance of clinical recurrence of COVID-19.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Twins, Monozygotic , Adolescent , Adult , Female , Humans , Male , Recurrence
16.
Sci Rep ; 11(1): 23070, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845256

ABSTRACT

HLA-G is a promiscuous immune checkpoint molecule. The HLA-G gene presents substantial nucleotide variability in its regulatory regions. However, it encodes a limited number of proteins compared to classical HLA class I genes. We characterized the HLA-G genetic variability in 4640 individuals from 88 different population samples across the globe by using a state-of-the-art method to characterize polymorphisms and haplotypes from high-coverage next-generation sequencing data. We also provide insights regarding the HLA-G genetic diversity and a resource for future studies evaluating HLA-G polymorphisms in different populations and association studies. Despite the great haplotype variability, we demonstrated that: (1) most of the HLA-G polymorphisms are in introns and regulatory sequences, and these are the sites with evidence of balancing selection, (2) linkage disequilibrium is high throughout the gene, extending up to HLA-A, (3) there are few proteins frequently observed in worldwide populations, with lack of variation in residues associated with major HLA-G biological properties (dimer formation, interaction with leukocyte receptors). These observations corroborate the role of HLA-G as an immune checkpoint molecule rather than as an antigen-presenting molecule. Understanding HLA-G variability across populations is relevant for disease association and functional studies.


Subject(s)
HLA-G Antigens/genetics , Polymorphism, Genetic , 3' Untranslated Regions , Alleles , Computational Biology , Dimerization , Evolution, Molecular , Gene Frequency , Genes, MHC Class I , Genetic Variation , Genetics, Population , Genotype , Global Health , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Immune Checkpoint Proteins/genetics , Immunogenetics , Introns , Linkage Disequilibrium , Polymorphism, Single Nucleotide
17.
Front Immunol ; 12: 742881, 2021.
Article in English | MEDLINE | ID: mdl-34650566

ABSTRACT

Despite the high number of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) symptoms worldwide, many exposed individuals remain asymptomatic and/or uninfected and seronegative. This could be explained by a combination of environmental (exposure), immunological (previous infection), epigenetic, and genetic factors. Aiming to identify genetic factors involved in immune response in symptomatic COVID-19 as compared to asymptomatic exposed individuals, we analyzed 83 Brazilian couples where one individual was infected and symptomatic while the partner remained asymptomatic and serum-negative for at least 6 months despite sharing the same bedroom during the infection. We refer to these as "discordant couples". We performed whole-exome sequencing followed by a state-of-the-art method to call genotypes and haplotypes across the highly polymorphic major histocompatibility complex (MHC) region. The discordant partners had comparable ages and genetic ancestry, but women were overrepresented (65%) in the asymptomatic group. In the antigen-presentation pathway, we observed an association between HLA-DRB1 alleles encoding Lys at residue 71 (mostly DRB1*03:01 and DRB1*04:01) and DOB*01:02 with symptomatic infections and HLA-A alleles encoding 144Q/151R with asymptomatic seronegative women. Among the genes related to immune modulation, we detected variants in MICA and MICB associated with symptomatic infections. These variants are related to higher expression of soluble MICA and low expression of MICB. Thus, quantitative differences in these molecules that modulate natural killer (NK) activity could contribute to susceptibility to COVID-19 by downregulating NK cell cytotoxic activity in infected individuals but not in the asymptomatic partners.


Subject(s)
Asymptomatic Infections , COVID-19 , Histocompatibility Antigens , Major Histocompatibility Complex , SARS-CoV-2 , Adult , Aged , Brazil , COVID-19/genetics , COVID-19/immunology , Female , Genetic Predisposition to Disease , Genotype , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Humans , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Male , Middle Aged , Exome Sequencing
18.
Am J Med Genet C Semin Med Genet ; 187(3): 357-363, 2021 09.
Article in English | MEDLINE | ID: mdl-34189818

ABSTRACT

Diagnosis of individuals affected by monogenic disorders was significantly improved by next-generation sequencing targeting clinically relevant genes. Whole exomes yield a large number of variants that require several filtering steps, prioritization, and pathogenicity classification. Among the criteria recommended by ACMG, those that rely on population databases critically affect analyses of individuals with underrepresented ancestries. Population-specific allelic frequencies need consideration when characterizing potential deleteriousness of variants. An orthogonal input for classification is annotation of variants previously classified as pathogenic as a criterion that provide supporting evidence widely sourced at ClinVar. We used a whole-genome dataset from a census-based cohort of 1,171 elderly individuals from São Paulo, Brazil, highly admixed, and unaffected by severe monogenic disorders, to investigate if pathogenic assertions in ClinVar are enriched with higher proportions of European ancestry, indicating bias. Potential loss of function (pLOF) variants were filtered from 4,250 genes associated with Mendelian disorders and annotated with ClinVar assertions. Over 1,800 single nucleotide pLOF variants were included, 381 had non-benign assertions. Among carriers (N = 463), average European ancestry was significantly higher than noncarriers (N = 708; p = .011). pLOFs in genomic contexts of non-European local ancestries were nearly three times less likely to have any ClinVar entry (OR = 0.353; p <.0001). Independent pathogenicity assertions are useful for variant classification in molecular diagnosis. However, European overrepresentation of assertions can promote distortions when classifying variants in non-European individuals, even in admixed samples with a relatively high proportion of European ancestry. The investigation and deposit of clinically relevant findings of diverse populations is fundamental improve this scenario.


Subject(s)
Genetic Variation , Genomics , Aged , Brazil , Exome , High-Throughput Nucleotide Sequencing , Humans
19.
Int J Obes (Lond) ; 45(5): 1017-1029, 2021 05.
Article in English | MEDLINE | ID: mdl-33633342

ABSTRACT

BACKGROUND/OBJECTIVES: Admixed populations are a resource to study the global genetic architecture of complex phenotypes, which is critical, considering that non-European populations are severely underrepresented in genomic studies. Here, we study the genetic architecture of BMI in children, young adults, and elderly individuals from the admixed population of Brazil. SUBJECTS/METHODS: Leveraging admixture in Brazilians, whose chromosomes are mosaics of fragments of Native American, European, and African origins, we used genome-wide data to perform admixture mapping/fine-mapping of body mass index (BMI) in three Brazilian population-based cohorts from Northeast (Salvador), Southeast (Bambuí), and South (Pelotas). RESULTS: We found significant associations with African-associated alleles in children from Salvador (PALD1 and ZMIZ1 genes), and in young adults from Pelotas (NOD2 and MTUS2 genes). More importantly, in Pelotas, rs114066381, mapped in a potential regulatory region, is significantly associated only in females (p = 2.76e-06). This variant is rare in Europeans but with frequencies of ~3% in West Africa and has a strong female-specific effect (95% CI: 2.32-5.65 kg/m2 per each A allele). We confirmed this sex-specific association and replicated its strong effect for an adjusted fat mass index in the same Pelotas cohort, and for BMI in another Brazilian cohort from São Paulo (Southeast Brazil). A meta-analysis confirmed the significant association. Remarkably, we observed that while the frequency of rs114066381-A allele ranges from 0.8 to 2.1% in the studied populations, it attains ~9% among women with morbid obesity from Pelotas, São Paulo, and Bambuí. The effect size of rs114066381 is at least five times higher than the FTO SNPs rs9939609 and rs1558902, already emblematic for their high effects. CONCLUSIONS: We identified six candidate SNPs associated with BMI. rs114066381 stands out for its high effect that was replicated and its high frequency in women with morbid obesity. We demonstrate how admixed populations are a source of new relevant phenotype-associated genetic variants.


Subject(s)
Body Mass Index , Genetics, Population , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Alleles , Brazil , Child , Child, Preschool , Chromosome Mapping , Female , Humans , Male , Middle Aged , Phenotype , Regulatory Sequences, Nucleic Acid , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...