Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 14: 227, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25135116

ABSTRACT

BACKGROUND: Brassinosteroid hormones regulate many aspects of plant growth and development. The membrane receptor BRI1 is a central player in the brassinosteroid signaling cascade. Semi-dwarf 'uzu' barley carries a mutation in a conserved domain of the kinase tail of BRI1 and this mutant allele is recognised for its positive contribution to both yield and lodging resistance. RESULTS: Here we show that uzu barley exhibits enhanced resistance to a range of pathogens. It was due to a combination of preformed, inducible and constitutive defence responses, as determined by a combination of transcriptomic and biochemical studies. Gene expression studies were used to determine that the uzu derivatives are attenuated in downstream brassinosteroid signaling. The reduction of BRI1 RNA levels via virus-induced gene silencing compromised uzu disease resistance. CONCLUSIONS: The pathogen resistance of uzu derivatives may be due to pleiotropic effects of BRI1 or the cascade effects of their repressed BR signaling.


Subject(s)
Disease Resistance/genetics , Hordeum/physiology , Host-Pathogen Interactions/genetics , Brassinosteroids/metabolism , Gene Silencing , Hordeum/virology , Plant Proteins/genetics
2.
Plant J ; 60(6): 1043-54, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19769576

ABSTRACT

Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC-NBS-LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety 'Altar' that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus-induced gene silencing in tetraploid wheat lines. In contrast to most described NBS-LRR proteins, the N-terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS-LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10-based resistance is highly unusual both in its dependence on two, only distantly, related CC-NBS-LRR proteins, as well as in the pattern of diversifying selection in the N-terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction.


Subject(s)
Immunity, Innate , Plant Diseases/genetics , Triticum/genetics , Alleles , Amino Acid Sequence , DNA, Plant/genetics , Gene Silencing , Genes, Plant , Genetic Variation , Molecular Sequence Data , Polyploidy , Selection, Genetic , Sequence Alignment , Sequence Analysis, DNA , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...