Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Equine Vet J ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472105

ABSTRACT

BACKGROUND: Equine embryonic loss following the development of endometrial cups delays return to cyclicity due to the production of equine chorionic gonadotropin (eCG). Natural degradation of endometrial cups coincides with an influx of immune cells at 100-120 days of gestation, but therapeutic stimulation of reduced eCG production has been relatively unsuccessful. Recently, we observed an increase in pro-inflammatory cytokine production following the use of the immunostimulant mycobacterium cell wall fraction (MCWF). OBJECTIVES: To evaluate the efficacy of hysteroscopic-guided injection of MCWF on the accelerated decline of eCG secretion. STUDY DESIGN: In vivo experiment. METHODS: Mares were pharmacologically aborted at 40-45 days of gestation, and then divided into groups: MCWF-treated (6 mg MCWF suspended in 20 mL LRS; n = 10) and Control (20 mL LRS; n = 6). Five days after abortion, hysteroscopic-guided injection of endometrial cups was performed, with 1 mL of volume placed into each visible endometrial cup. This was repeated 7 days later. Trans-rectal ultrasonography was performed to monitor ovarian activity, and serum was obtained to assess eCG and cytokine concentrations. RESULTS: Concentrations of eCG decreased in the MCWF-treated group (p < 0.01) with a significant suppression noted as early as 14 days after onset of treatment and remained suppressed for the duration of the study. This coincided with an increase in peripheral IFN-γ (p < 0.01) and IL-1ß (p < 0.01) concentrations. Eight out of ten MCWF-treated mares (80%) developed pre-ovulatory follicles, in comparison to 2/6 controls (33%). A pre-ovulatory follicle was noted 23 ± 4 days after onset of treatment. MAIN LIMITATIONS: No pregnancy data was obtained following treatment. CONCLUSIONS: This is the first report of a treatment for the accelerated reduction of eCG following abortion. Stimulation of this process allowed mares to develop a pre-ovulatory follicle within a month of MCWF treatment onset, granting repeat attempts at breeding within the confines of a single breeding season.

2.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108254

ABSTRACT

The placenta is a temporary organ that is essential for the survival of the fetus, with a lifelong effect on the health of both the offspring and the dam. The functions of the placenta are controlled by its dynamic gene expression during gestation. In this study, we aimed to investigate the equine placental DNA methylome as one of the fundamental mechanisms that controls the gene expression dynamic. Chorioallantois samples from four (4M), six (6M), and ten (10M) months of gestation were used to map the methylation pattern of the placenta. Globally, methylation levels increased toward the end of gestation. We identified 921 differentially methylated regions (DMRs) between 4M and 6M, 1225 DMRs between 4M and 10M, and 1026 DMRs between 6M and 10M. A total of 817 genes carried DMRs comparing 4M and 6M, 978 comparing 4M and 10M, and 804 comparing 6M and 10M. We compared the transcriptomes between the samples and found 1381 differentially expressed genes (DEGs) when comparing 4M and 6M, 1428 DEGs between 4M and 10M, and 741 DEGs between 6M and 10M. Finally, we overlapped the DEGs and genes carrying DMRs (DMRs-DEGs). Genes exhibiting (a) higher expression, low methylation and (b) low expression, high methylation at different time points were identified. The majority of these DMRs-DEGs were located in introns (48.4%), promoters (25.8%), and exons (17.7%) and were involved in changes in the extracellular matrix; regulation of epithelial cell migration; vascularization; and regulation of minerals, glucose, and metabolites, among other factors. Overall, this is the first report highlighting the dynamics in the equine placenta methylome during normal pregnancy. The findings presented serve as a foundation for future studies on the impact of abnormal methylation on the outcomes of equine pregnancies.


Subject(s)
DNA Methylation , Placenta , Pregnancy , Animals , Female , Horses/genetics , Placenta/metabolism , Transcriptome , Epigenome , Fetus/metabolism , Epigenesis, Genetic
3.
Equine Vet J ; 55(3): 405-418, 2023 May.
Article in English | MEDLINE | ID: mdl-35622344

ABSTRACT

BACKGROUND: Equine premature placental separation (PPS) is poorly understood and represents an important risk factor for fetal/neonatal hypoxia. OBJECTIVES: To examine transcriptomic changes in the chorioallantois (CA) from mares with clinical PPS compared with the CA from normal foaling mares. Differential gene expression was determined and gene ontology as well as molecular pathways related to PPS were characterised. STUDY DESIGN: Retrospective case: control study. METHODS: CA were collected from Thoroughbred mares with a clinical history of PPS (n = 33) and from control Thoroughbred mares (n = 4) with normal parturition for examination of transcriptional changes in the placenta associated with PPS. Transcriptomic changes in the villous CA near the cervical star were determined by Illumina® sequencing and subsequent bioinformatic analysis. PPS samples were divided by k-means clustering, and differentially expressed genes (DEGs) in each PPS cluster were identified by comparing to controls. Shared DEGs between PPS clusters were used for gene ontology analysis and pathway analysis. RESULTS: A total of 1204 DEGs were identified between PPS and control. Gene ontology revealed extracellular matrix (ECM) and cell adhesion, and pathway analysis revealed fatty acid, p-53, hypoxia and inflammation. Eleven key regulator genes of PPS including growth factors (IGF1, TGFB2, TGFB3), transcription factors (HIF1A, JUNB, SMAD3), and transmembrane receptors (FGFR1, TNFRSF1A, TYROBP) were also identified. MAIN LIMITATIONS: The use of clinical history of PPS, in the absence of other criteria, may have led to misidentification of some cases as PPS. CONCLUSIONS: Transcriptomic analysis indicated that changes in ECM and cell adhesion were important factors in equine PPS. Key predicted upstream events include genes associated with hypoxia, inflammation and growth factors related to the pathogenesis of equine PPS.


Subject(s)
Horse Diseases , Inflammation , Placenta , Animals , Pregnancy , Horses/genetics , Female , Transcriptome , Retrospective Studies , Inflammation/metabolism , Inflammation/veterinary , Horse Diseases/etiology
4.
J Reprod Immunol ; 152: 103655, 2022 08.
Article in English | MEDLINE | ID: mdl-35716439

ABSTRACT

Ascending placentitis is the leading cause of abortion in the horse. The pleiotropic cytokine tumor necrosis factor (TNF) is an upstream regulator of this disease, but little is understood regarding its function in pregnancy maintenance or placental infection. To assess this, RNA sequencing was performed on chorioallantois and endometrium of healthy pregnant mares at various gestational lengths (n = 4/gestational age), in addition to postpartum chorioallantois, and diestrus endometrium to assess expression of TNF, TNFR-1, and TNFR-2. Additionally, ascending placentitis was induced via trans-cervical inoculation of S. equi spp. zooepidemicus in pregnant mares (n = 6 infected / n = 6 control) and tissues and serum were collected to evaluate TNF-related transcripts. IHC was performed to confirm protein localization of TNFR-1 and TNFR-2. In healthy pregnancy, TNFR-1 appears to be the predominant TNF-related receptor. Following induction of disease, TNF concentrations increased in maternal serum, but expression did not alter at the tissue level. While both TNFR-1 and TNFR-2 increased following induction of disease, alterations in downstream pathways indicate that TNFR-1 is the dominant receptor in ascending placentitis, and is primarily activated within the chorioallantois, with minimal signaling occurring within the endometrium. In conclusion, TNF appears to be involved in the pathophysiology of ascending placentitis. An increase in this cytokine during disease progression is believed to activate TNFR-1 within the chorioallantois, leading to various pro-apoptotic and necroptotic outcomes, all of which may signal for fetal demise and impending abortion.


Subject(s)
Chorioamnionitis , Horse Diseases , Placenta Diseases , Streptococcus equi , Animals , Chorioamnionitis/pathology , Cytokines , Female , Horse Diseases/metabolism , Horse Diseases/pathology , Horses , Humans , Placenta/pathology , Pregnancy , Tumor Necrosis Factor-alpha , Tumor Necrosis Factors
5.
J Equine Vet Sci ; 109: 103826, 2022 02.
Article in English | MEDLINE | ID: mdl-34843887

ABSTRACT

Cases of nocardioform placentitis are characterized by focal, mucoid placentitis resulting in late-term abortion, premature birth, or small, full-term foals, occur sporadically, and are most commonly associated with Crossiella equi and Amycolatopsis spp. infection. The goal of this project was to develop an enzyme-linked immunosorbent assay (ELISA) for quantifying antibodies against Crossiella equi and Amycolatopsis spp. and utilize the ELISA to determine when exposure occurs. Serum samples collected during the 2020 foaling season from Crossiella equi (n = 8) and Amycolatopsis spp. (n = 32) infected mares, as well as nonaffected mares (n = 51 mares), were used to develop and optimize bacteria-specific ELISAs. Following development of the ELISAs, banked serum samples from a single, central Kentucky Thoroughbred farm collected during 2012 to 2013 (n = 104 mares) and 2013-14 (n = 82 mares) were analyzed. Differences in various groups were analyzed using one-way analysis of variance (ANOVA). Crossiella equi-infected mares had significantly higher ELISA unit (EU) values on the Crossiella equi ELISA near parturition when compared to the other two groups (P < .001). Using the Amycolatopsis spp. ELISA, EU values were not significantly different between Amycolatopsis spp. infected and non-affected mares, suggesting this ELISA is not specific for Amycolatopsis spp. During 2013 to 2014, there were significant increases in EU values between June and late September for the Crossiella equi ELISA, suggesting exposure in the summer and early fall months. Data from the Crossiella equi ELISA may help provide a better understanding of the epidemiology of nocardioform placentitis, guide the development of a successful experimental challenge model, and allow for further refinement of these ELISAs.


Subject(s)
Chorioamnionitis , Horse Diseases , Placenta Diseases , Abortion, Veterinary/epidemiology , Animals , Chorioamnionitis/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Horse Diseases/epidemiology , Horses , Placenta Diseases/epidemiology , Placenta Diseases/veterinary , Pregnancy
6.
Animals (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36611662

ABSTRACT

Sperm-neutrophil binding is an important facet of breeding and significantly impacts fertility. While a specific seminal plasma protein has been found to reduce this binding and improve fertility (CRISP-3), additional molecule(s) appear to promote binding between defective sperm and neutrophils. Recent work has suggested one of these proteins is lactoferrin (LF), an 80 kDa iron-binding protein found throughout the body, but the purity of the protein was not confirmed. It is unknown if LF binds to sperm selectively based on viability, and if receptors for LF are located on equine sperm. To evaluate this, we attempted to purify equine seminal LF from five stallions (n = 5), biotinylate LF, and evaluate potential binding site(s) on spermatozoa. LF was consistently associated with superoxide dismutase (SOD-3), and all attempts to separate the two proteins were unsuccessful. Flow cytometric and microscopic analyses were used to compare LF/SOD-3 binding to viable and nonviable spermatozoa. Additionally, various methods of biotinylation were assessed to optimize this methodology. Biotinylation of seminal plasma protein was an effective and efficient method to study seminal plasma protein properties, and the binding site for LF/SOD-3 was found to be broadly localized to the entire sperm cell surface as well as selective towards nonviable/defective sperm. Although we were not able to determine if the binding to equine spermatozoa was through LF or SOD-3, we can conclude that equine seminal LF is tightly bound to SOD-3 and this protein complex binds selectively to nonviable spermatozoa, possibly to mark them for elimination by neutrophil phagocytosis.

7.
Front Immunol ; 12: 734322, 2021.
Article in English | MEDLINE | ID: mdl-34956173

ABSTRACT

Osteoarthritis (OA) may result from impaired ability of synovial macrophages to resolve joint inflammation. Increasing macrophage counts in inflamed joints through injection with bone marrow mononuclear cells (BMNC) induces lasting resolution of synovial inflammation. To uncover mechanisms by which BMNC may affect resolution, in this study, differential transcriptional signatures of BMNC in response to normal (SF) and inflamed synovial fluid (ISF) were analyzed. We demonstrate the temporal behavior of co-expressed gene networks associated with traits from related in vivo and in vitro studies. We also identified activated and inhibited signaling pathways and upstream regulators, further determining their protein expression in the synovium of inflamed joints treated with BMNC or DPBS controls. BMNC responded to ISF with an early pro-inflammatory response characterized by a short spike in the expression of a NF-ƙB- and mitogen-related gene network. This response was associated with sustained increased expression of two gene networks comprising known drivers of resolution (IL-10, IGF-1, PPARG, isoprenoid biosynthesis). These networks were common to SF and ISF, but more highly expressed in ISF. Most highly activated pathways in ISF included the mevalonate pathway and PPAR-γ signaling, with pro-resolving functional annotations that improve mitochondrial metabolism and deactivate NF-ƙB signaling. Lower expression of mevalonate kinase and phospho-PPARγ in synovium from inflamed joints treated with BMNC, and equivalent IL-1ß staining between BMNC- and DPBS-treated joints, associates with accomplished resolution in BMNC-treated joints and emphasize the intricate balance of pro- and anti-inflammatory mechanisms required for resolution. Combined, our data suggest that BMNC-mediated resolution is characterized by constitutively expressed homeostatic mechanisms, whose expression are enhanced following inflammatory stimulus. These mechanisms translate into macrophage proliferation optimizing their capacity to counteract inflammatory damage and improving their general and mitochondrial metabolism to endure oxidative stress while driving tissue repair. Such effect is largely achieved through the synthesis of several lipids that mediate recovery of homeostasis. Our study reveals candidate mechanisms by which BMNC provide lasting improvement in patients with OA and suggests further investigation on the effects of PPAR-γ signaling enhancement for the treatment of arthritic conditions.


Subject(s)
Bone Marrow Cells/immunology , Leukocytes, Mononuclear/immunology , Osteoarthritis/complications , Osteoarthritis/immunology , Synovitis/complications , Synovitis/immunology , Transcriptome/genetics , Animals , Carpal Joints/immunology , Disease Models, Animal , Female , Gene Expression Regulation , Gene Regulatory Networks , Genomics/methods , Horses , Lipopolysaccharides/adverse effects , Macrophages/immunology , Male , Osteoarthritis/genetics , Synovial Fluid/immunology , Synovitis/chemically induced , Synovitis/genetics
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829994

ABSTRACT

A sufficient vascular network within the feto-maternal interface is necessary for placental function. Several pregnancy abnormalities have been associated with abnormal vascular formations in the placenta. We hypothesized that growth and expansion of the placental vascular network in the equine (Equus caballus) placenta is regulated by estrogens (estrogen family hormones), a hormone with a high circulating concentration during equine gestation. Administration of letrozole, a potent and specific inhibitor of aromatase, during the first trimester (D30 to D118), decreased circulatory estrone sulfate concentrations, increased circulatory testosterone and androstenedione concentrations, and tended to reduce the weight of the fetus (p < 0.1). Moreover, the gene expression of CYP17A1 was increased, and the expression of androgen receptor was decreased in the D120 chorioallantois (CA) of letrozole-treated mares in comparison to that of the control mares. We also found that at D120, the number of vessels tended to decrease in the CAs with letrozole treatment (p = 0.07). In addition, expression of a subset of angiogenic genes, such as ANGPT1, VEGF, and NOS2, were altered in the CAs of letrozole-treated mares. We further demonstrated that 17ß-estradiol increases the expression of ANGPT1 and VEGF and increases the angiogenic activity of equine endothelial cells in vitro. Our results from the estrogen-suppressed group demonstrated an impaired placental vascular network, suggesting an estrogen-dependent vasculogenesis in the equine CA during the first trimester.


Subject(s)
Estrogens/genetics , Horses/genetics , Letrozole/pharmacology , Neovascularization, Physiologic/genetics , Androstenedione/genetics , Angiopoietin-1/genetics , Animals , Aromatase/genetics , Female , Gene Expression Regulation, Developmental/drug effects , Horses/growth & development , Maternal-Fetal Relations/drug effects , Neovascularization, Physiologic/drug effects , Placenta/blood supply , Placenta/drug effects , Pregnancy , Pregnancy Trimester, First , Receptors, Androgen/genetics , Steroid 17-alpha-Hydroxylase/genetics , Testosterone/genetics , Vascular Endothelial Growth Factor A/genetics
9.
Animals (Basel) ; 11(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34438779

ABSTRACT

The expression pattern and distribution of sex steroid receptors and steroidogenic enzymes during development of the equine accessory sex glands has not previously been described. We hypothesized that equine steroidogenic enzyme and sex steroid receptor expression is dependent on reproductive status. Accessory sex glands were harvested from mature stallions, pre-pubertal colts, geldings, and fetuses. Expression of mRNA for estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), androgen receptor (AR), 3ß-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3ßHSD), P450,17α hydroxylase, 17-20 lyase (CYP17), and aromatase (CYP19) were quantified by RT-PCR, and protein localization of AR, ER-α, ER-ß, and 3ßHSD were investigated by immunohistochemistry. Expression of AR, ESR2, CYP17, or CYP19 in the ampulla was not different across reproductive statuses (p > 0.1), while expression of ESR1 was higher in the ampulla of geldings and fetuses than those of stallions or colts (p < 0.05). AR, ESR1 and ESR2 expression were decreased in stallion vesicular glands compared to the fetus or gelding, while AR, ESR1, and CYP17 expression were decreased in the bulbourethral glands compared to other glands. ESR1 expression was increased in the prostate compared to the bulbourethral glands, and no differences were seen with CYP19 or 3ß-HSD. In conclusion, sex steroid receptors are expressed in all equine male accessory sex glands in all stages of life, while the steroidogenic enzymes were weakly and variably expressed.

10.
J Equine Vet Sci ; 104: 103683, 2021 09.
Article in English | MEDLINE | ID: mdl-34416981

ABSTRACT

The goal of this study was to develop a safe, effective, and economical method for permanent sterilization of mares based upon tubo-ovarian ligation performed via colpotomy. In this study, we evaluated the application of a nylon cable tie (zip-tie) to the ovarian pedicle and oviduct of mares to induce ovarian ischemia and tubal ligation without removal of ovaries. Initially, efficiency of zip-ties on the ovarian pedicle was tested in vitro and in vivo. Based on the absence of leakage through the zip-tie ligated vessels in anatomic specimens, we confirmed the potential efficacy of the technique. Next, ligation of the ovarian pedicle via a standing colpotomy was conducted in five mares. Although the surgical procedure in these mares appeared to be quick and efficient, all five mares were noted to develop ovarian adhesions to surrounding abdominal viscera in either one or both ovaries postoperatively. Ovarian ischemia led to loss of ovarian activity based upon ultrasound examination, which was confirmed by a low plasma progesterone concentration in four of the five mares. During the postoperative period, four mares demonstrated clinical signs related to the ovarian adhesions and were euthanized. The postoperative complications associated with ovarian adhesions to abdominal viscera presented significant challenges, limiting the success of this study. While this technique resulted in ovarian ischemia and atrophy in four out of the five mares, we were unable to assess long-term effects on the health and reproduction of the mares due to the ovarian adhesions to the surrounding tissues and the potential for secondary complications. Although technically feasible, tubo-ovarian ligation via colpotomy does not appear to be a viable option for sterilization of mares using the described technique due to ovarian adhesions post procedure.


Subject(s)
Colpotomy , Sterilization, Tubal , Animals , Colpotomy/veterinary , Female , Horses , Ovariectomy/veterinary , Pregnancy , Sterilization , Sterilization, Reproductive/veterinary , Sterilization, Tubal/adverse effects , Sterilization, Tubal/veterinary
11.
Vet Res ; 52(1): 103, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34238364

ABSTRACT

Nocardioform placentitis (NP) continues to result in episodic outbreaks of abortion and preterm birth in mares and remains a poorly understood disease. The objective of this study was to characterize the transcriptome of the chorioallantois (CA) of mares with NP. The CA were collected from mares with confirmed NP based upon histopathology, microbiological culture and PCR for Amycolatopsis spp. Samples were collected from the margin of the NP lesion (NPL, n = 4) and grossly normal region (NPN, n = 4). Additionally, CA samples were collected from normal postpartum mares (Control; CRL, n = 4). Transcriptome analysis identified 2892 differentially expressed genes (DEGs) in NPL vs. CRL and 2450 DEGs in NPL vs. NPN. Functional genomics analysis elucidated that inflammatory signaling, toll-like receptor signaling, inflammasome activation, chemotaxis, and apoptosis pathways are involved in NP. The increased leukocytic infiltration in NPL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP3, and MMP8) and apoptosis-related genes, such as caspases (CASP3 and CASP7), which could explain placental separation associated with NP. Also, NP was associated with downregulation of several placenta-regulatory genes (ABCG2, GCM1, EPAS1, and NR3C1), angiogenesis-related genes (VEGFA, FLT1, KDR, and ANGPT2), and glucose transporter coding genes (GLUT1, GLUT10, and GLUT12), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could elucidate placental insufficiency accompanying NP. In conclusion, our findings revealed for the first time, the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during NP, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways.


Subject(s)
Chorioamnionitis/veterinary , Gram-Positive Bacterial Infections/veterinary , Horse Diseases/immunology , Transcriptome , Actinobacteria/isolation & purification , Amycolatopsis/isolation & purification , Animals , Chorioamnionitis/immunology , Chorioamnionitis/microbiology , Female , Gene Expression Profiling/veterinary , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Horse Diseases/microbiology , Horses , Pregnancy
12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33853939

ABSTRACT

Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.


Subject(s)
Genomic Imprinting/genetics , Horses/genetics , Placentation/genetics , Alleles , Animals , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genomic Imprinting/physiology , Horses/metabolism , Placenta/metabolism , Pregnancy
13.
Biol Reprod ; 104(6): 1386-1399, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33693478

ABSTRACT

RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.


Subject(s)
Horses/physiology , Placenta/physiology , Pregnancy Proteins/genetics , Animals , Female , Horses/genetics , Pregnancy , Pregnancy Proteins/metabolism
14.
Reproduction ; 161(6): 603-621, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33780349

ABSTRACT

Cervical remodeling is a critical component in both term and preterm labor in eutherian mammals. However, the molecular mechanisms underlying cervical remodeling remain poorly understood in the mare. The current study compared the transcriptome of the equine cervix (cervical mucosa (CM) and stroma (CS)) during placentitis (placentitis group, n = 5) and normal prepartum mares (prepartum group, n = 3) to normal pregnant mares (control group, n = 4). Transcriptome analysis identified differentially expressed genes (DEGs) during placentitis (5310 in CM and 907 in CS) and during the normal prepartum period (189 in CM and 78 in CS). Our study revealed that cervical remodeling during placentitis was dominated by inflammatory signaling as reflected by the overrepresented toll-like receptor signaling, interleukin signaling, T cell activation, and B cell activation pathways. These pathways were accompanied by upregulation of several proteases, including matrix metalloproteinases (MMP1, MMP2, and MMP9), cathepsins (CTSB, CTSC, and CTSD) and a disintegrin and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1, ADAMTS4, and ADAMTS5), which are crucial for degradation of cervical collagens during remodeling. Cervical remodeling during placentitis was also associated with upregulation of water channel-related transcripts (AQP9 and RLN), angiogenesis-related transcripts (NOS3, ENG1, THBS1, and RAC2), and aggrecan (ACAN), a hydrophilic glucosaminoglycan, with subsequent cervical hydration. The normal prepartum cervix was associated with upregulation of ADAMTS1, ADAMTS4, NOS3 and THBS1, which might reflect an early stage of cervical remodeling taking place in preparation for labor. In conclusion, our findings revealed the possible key regulators and mechanisms underlying equine cervical remodeling during placentitis and the normal prepartum period.


Subject(s)
Cervix Uteri/physiopathology , Gene Expression Regulation , Horse Diseases/metabolism , Placenta Diseases/veterinary , Placenta/metabolism , Transcriptome , Animals , Female , Horse Diseases/genetics , Horse Diseases/pathology , Horses , Placenta Diseases/genetics , Placenta Diseases/metabolism , Placenta Diseases/pathology , Pregnancy
15.
J Equine Vet Sci ; 99: 103395, 2021 04.
Article in English | MEDLINE | ID: mdl-33781417

ABSTRACT

Preterm labor and/or abortion causes considerable economic impact on the equine industry. Unfortunately, few experimental models exist for the induction of various pregnancy-related complications, and therefore extrapolations are made from the experimental model for ascending placentits, although inferences may be minimal. Certain steroid hormones (progestogens, estrogens) and fetal proteins (alpha-fetoprotein; AFP) might improve the diagnostics for abnormal pregnancy, but the utility of these markers in the field is unknown. To assess this, thoroughbred mares (n = 702) were bled weekly beginning in December 2013 until parturition/abortion. Following parturition, fetal membranes were assessed histopathologically and classified as either ascending placentitis (n = 6), focal mucoid placentitis (n = 6), idiopathic abortion (n = 6) or no disease (n = 20). Weekly serum samples were analyzed for concentrations of progesterone, estradiol-17ß, and AFP. Samples were analyzed retrospectively from the week of parturition/abortion in addition to the preceding four weeks. For both ascending and focal mucoid placentitis, a significant increase in progesterone and AFP was noted, alongside a significant decrease in estradiol-17ß and the ratio of estradiol-17ß to progesterone in comparison to controls. In contrast, idiopathic abortions experienced a decrease in progesterone concentrations alongside an increase in AFP, and this was only noted in the week preceding parturition/abortion. In conclusion, spontaneous placental infection in the horse altered both endocrine and feto-secretory markers in maternal circulation, while minimal changes were noted preceding noninfectious idiopathic abortion. Additionally, this is the first study to report an alteration in steroid hormones and AFP during the disease process of focal mucoid placentitis, the etiology of which includes Nocardioform placentitis.


Subject(s)
Horse Diseases , Placenta Diseases , Streptococcus equi , Animals , Biomarkers , Female , Horse Diseases/diagnosis , Horses , Placenta Diseases/veterinary , Pregnancy , Retrospective Studies , alpha-Fetoproteins
16.
Am J Reprod Immunol ; 85(5): e13363, 2021 05.
Article in English | MEDLINE | ID: mdl-33098605

ABSTRACT

PROBLEM: Ascending placentitis is the leading cause of abortion in the horse. Interleukin (IL)-6 is considered predictive of placental infection in other species, but little is understood regarding its role in the pathophysiology of ascending placentitis. METHOD OF STUDY: Sub-acute ascending placentitis was induced via trans-cervical inoculation of S zooepidemicus, and various fluids/serum/tissues collected 8 days later. Concentrations of IL-6 were detected within fetal fluids and serum in inoculated (n = 6) and control (n = 6) mares. RNASeq was performed on the placenta (endometrium and chorioallantois) to assess transcripts relating to IL-6 pathways. IHC was performed for immunolocalization of IL-6 receptor (IL-6R) in the placenta. RESULTS: IL-6 concentrations increased in allantoic fluid following inoculation, with a trend toward an increase in amniotic fluid. Maternal serum IL-6 was increased in inoculated animals, while no changes were noted in fetal serum. mRNA expression of IL-6-related transcripts within the chorioallantois indicates that IL-6 is activating the classical JAK/STAT pathway, thereby acting as anti-inflammatory, anti-apoptotic, and pro-survival. The IL-6R was expressed within the chorioallantois, indicating a paracrine signaling pathway of maternal IL-6 to fetal IL-6R. CONCLUSION: IL-6 plays a crucial role in the placental response to induction of sub-acute equine ascending placentitis, and this could be noted in amniotic fluid, allantoic fluid, and maternal serum. Additionally, IL-6 is acting as anti-inflammatory in this disease, potentially altering disease progression, impeding abortion signals, and assisting with the production of a viable neonate.


Subject(s)
Horse Diseases/immunology , Interleukin-6/immunology , Placenta Diseases/immunology , Streptococcal Infections/immunology , Streptococcus equi , Amniotic Fluid/immunology , Animals , Endometrium/immunology , Female , Horse Diseases/blood , Horse Diseases/genetics , Horses , Interleukin-6/blood , Interleukin-6/genetics , Placenta/immunology , Placenta Diseases/blood , Placenta Diseases/genetics , Placenta Diseases/veterinary , Pregnancy , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , Streptococcal Infections/blood , Streptococcal Infections/genetics , Streptococcal Infections/veterinary
17.
Placenta ; 93: 101-112, 2020 04.
Article in English | MEDLINE | ID: mdl-32250734

ABSTRACT

INTRODUCTION: Hydrallantois is the excessive accumulation of fluid in the allantoic cavities during the last trimester of pregnancy, leading to abdominal wall hernias, cardiovascular shock, abortion, and dystocia. It has been postulated that hydrallantois is associated with structural and/or functional changes in the chorioallantoic membrane. In the present study, we hypothesized that angiogenesis is impaired in the hydrallantoic placenta. METHOD: Capillary density in the hydrallantoic placenta was evaluated in the chorioallantois via immunohistochemistry for Von Willebrand Factor. Moreover, the expression of angiogenic genes was compared between equine hydrallantois and age-matched, normal placentas. RESULTS: In the hydrallantoic samples, edema was the main pathological finding. The capillary density was significantly lower in the hydrallantoic samples than in normal placentas. The reduction in the number of vessels was associated with abnormal expression of a subset of angiogenic and hypoxia-associated genes including VEGF, VEGFR1, VEGFR2, ANGPT1, eNOS and HIF1A. We believe that the capillary density and the abnormal expression of angiogenic genes leads to tissue hypoxia (high expression of HIF1A) and edema. Finally, we identified a lower expression of genes associated with steroidogenic enzyme (CYP19A1) and estrogen receptor signaling (ESR2) in the hydrallantoic placenta. DISCUSSION: Based on the presented data, we believe that formation of edema is due to disrupted vascular development (low number of capillaries) and hypoxia in the hydrallantoic placenta. The edema leads to further hypoxia and consequently, causes an increase in vessel permeability which leads to a gradual increase in interstitial fluid accumulation, resulting in an insufficient transplacental exchange rate and accumulation of fluid in the allantoic cavity.


Subject(s)
Horse Diseases , Neovascularization, Pathologic/pathology , Placenta Diseases , Placenta/blood supply , Polyhydramnios/pathology , Pregnancy, Animal , Allantois/metabolism , Allantois/pathology , Animals , Female , Horse Diseases/genetics , Horse Diseases/pathology , Horse Diseases/physiopathology , Horses , Microvascular Density , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/physiopathology , Placenta/metabolism , Placenta/pathology , Placenta/physiopathology , Placenta Diseases/genetics , Placenta Diseases/pathology , Placenta Diseases/physiopathology , Placenta Diseases/veterinary , Polyhydramnios/etiology , Polyhydramnios/physiopathology , Polyhydramnios/veterinary , Pregnancy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Am J Reprod Immunol ; 82(5): e13179, 2019 11.
Article in English | MEDLINE | ID: mdl-31373743

ABSTRACT

PROBLEM: Ascending placentitis is one of the leading causes of abortion in the horse. Minimal work has focused on its effect on fetal fluids or the antenatal immune response of the fetus. METHODOLOGY: Placentitis was induced via transcervical inoculation of Streptococcus equi ssp Zooepidemicus, and fluids/serum/tissues were collected 4-6 days later following euthanasia. Cytokine concentrations were detected using a multiplex immunoassay within fetal fluids (amniotic and allantoic) and serum (maternal and fetal) in inoculated and control mares. In addition, tissues from fetal (spleen, liver, lung, umbilicus, amnioallantois) and maternal (spleen, liver, lung, chorioallantois, endometrium) origin were analyzed in inoculated and control mares utilizing qPCR for expression of cytokines. RESULTS: No difference in cytokine concentrations in maternal or fetal serum was noted between inoculated and control mares. Concentrations of IL-1ß, IL-6, IL-10, and GRO were upregulated in the amniotic fluid following inoculation, with a trend toward higher IL-6 concentration in allantoic fluid. The amnioallantoic tissue separating the two fluids had higher expression of IL-1ß and IL-6 following inoculation, while chorioallantois and endometrium upregulated IL-1ß and IL-8 expression. IL-1ß was upregulated in the maternal spleen following inoculation. Fetal spleens were upregulated in expression of IL-1ß, GRO, and IL-6, while IL-6 was higher in fetal liver after inoculation than in controls. CONCLUSION: The maternal response to placentitis is primarily pro-inflammatory while the fetus appears to play a regulatory role in this inflammation. Additionally, amniotic fluid sampling may be more diagnostic of ascending placentitis than circulating cytokines.


Subject(s)
Chorioamnionitis , Fetus , Horse Diseases , Horses , Pregnancy Complications, Infectious , Streptococcal Infections , Streptococcus equi/immunology , Animals , Chorioamnionitis/immunology , Chorioamnionitis/microbiology , Chorioamnionitis/pathology , Chorioamnionitis/veterinary , Female , Fetus/immunology , Fetus/microbiology , Fetus/pathology , Horse Diseases/immunology , Horse Diseases/microbiology , Horse Diseases/pathology , Horses/immunology , Horses/microbiology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcal Infections/veterinary
19.
Reprod Fertil Dev ; 31(9): 1486-1496, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31092309

ABSTRACT

Characterisation of fetal fluids in healthy and disease states of pregnant mares can help to unravel the pathophysiology and to identify putative markers of disease. Thus, this study aimed to compare the protein composition of: (1) amniotic and allantoic fluids of healthy mares obtained immediately after euthanasia and (2) allantoic fluid harvested via centesis before and after experimental induction of placentitis via transcervical inoculation of Streptococcus equi ssp zooepidemicus in healthy mares. Fetal fluids were analysed with a high-throughput proteomic technique after in-gel digestion. Statistical comparisons were performed following normalisation of peptide spectral match. Global normalisation was performed to calculate relative expression. There were 112 unique proteins present in both allantoic and amniotic fluids. There were 13 and 29 proteins defined as amniotic- or allantoic-specific respectively that were present in at least two fluid samples. Another 26 proteins were present in both amniotic and allantoic fluids. Panther DB functional classification grouped fetal-fluid proteins as transfer carriers, signalling molecules, receptors, immunity, hydrolase, enzymes, membrane traffic, cytoskeleton, cell adhesion, calcium binding and extracellular matrix. Experimentally induced placentitis resulted in 10 proteins being upregulated and 10 downregulated in allantoic fluid. Newly identified proteins and changes in the fetal-fluid proteome provide clues about the physiology of pregnancy and pathogenesis of placentitis.


Subject(s)
Amniotic Fluid/metabolism , Placenta Diseases/metabolism , Proteome , Animals , Female , Horses , Pregnancy , Proteomics , Streptococcus equi
20.
Biol Reprod ; 101(1): 162-176, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31107530

ABSTRACT

The current study aimed to elucidate the mechanisms underlying myometrial activation during equine placentitis related to progestogens and the progesterone receptor signaling pathways. Placentitis was induced via intracervical inoculation with Streptococcus equi ssp zooepidemicus in mares at approximately 290 days of gestation (placentitis group; n = 6) with uninoculated gestationally matched mares as controls (n = 4). Mares in the placentitis and control groups were euthanized, and myometrial samples were collected from two regions: region 1-parallel to active placentitis lesion with placental separation in placentitis group (P1) or caudal pole of the placenta in control group (C1); and region 2-parallel to apparently normal placenta without separation in placentitis group (P2) or uterine body in control group (C2). In the current study, SRD5A1 and AKR1C23, which encode for the key P4 metabolizing enzymes, were downregulated in P1 in comparison to C1, C2, and P2, and this was associated with a decline (P < 0.05) in 5αDHP, allopregnanolone (3αDHP), and 20αDHP in P1 in comparison to C1. Further, myometrial expression of PR was downregulated (P < 0.05) in P1 in comparison to C1 and P2, and this was associated with activation of the inflammatory cascade as reflected by significant upregulation of IL-1ß and IL-8 in P1 in comparison to C1, C2, and P2, and supported by increased tissue leukocytes in P1 in comparison to C1. In conclusion, equine placentitis is associated with a localized withdrawal of progestins and a downregulation of the PR in the myometrium concomitant with upregulation of inflammatory cytokines and subsequent myometrial activation.


Subject(s)
Horse Diseases/metabolism , Horses , Myometrium/metabolism , Placenta Diseases/metabolism , Progestins/metabolism , Animals , Case-Control Studies , Chorioamnionitis/genetics , Chorioamnionitis/metabolism , Chorioamnionitis/pathology , Chorioamnionitis/veterinary , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/genetics , Female , Gene Expression Regulation/genetics , Horse Diseases/genetics , Horse Diseases/pathology , Horses/genetics , Horses/metabolism , Inflammation Mediators/metabolism , Myometrium/pathology , Placenta Diseases/genetics , Placenta Diseases/pathology , Placenta Diseases/veterinary , Pregnancy , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/veterinary , Progestins/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...