Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338670

ABSTRACT

In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.


Subject(s)
DNA Polymerase I , Deinococcus , DNA Polymerase I/genetics , Deinococcus/genetics , Temperature , DNA-Directed DNA Polymerase/genetics , Nucleic Acid Amplification Techniques , DNA Replication
2.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373233

ABSTRACT

Herein, a novel completely green biosensor was designed exploiting both the biological and instrumental components made of eco-friendly materials for the detection of herbicides encapsulated into biodegradable nanoparticles for a sustainable agriculture. Similar nanocarriers, indeed, can deliver herbicides to the correct location, reducing the amount of active chemicals deposited in the plant, impacting the agricultural and food industries less. However, handling measurements of nanoherbicides is crucial to provide comprehensive information about their status in the agricultural fields to support farmers in decision-making. In detail, whole cells of the unicellular green photosynthetic alga Chlamydomonas reinhardtii UV180 mutant were immobilized by a green protocol on carbonized lignin screen-printed electrodes and integrated into a photo-electrochemical transductor for the detection of nanoformulated atrazine. Specifically, atrazine encapsulated into zein and chitosan doped poly-ε-caprolactone nanoparticles (atrazine-zein and atrazine-PCL-Ch) were analyzed following the current signals at a fixed applied potential of 0.8 V, in a range between 0.1 and 5 µM, indicating a linear relationship in the measured dose-response curves and a detection limit of 0.9 and 1.1 nM, respectively. Interference studies resulted in no interference from 10 ppb bisphenol A, 1 ppb paraoxon, 100 ppb arsenic, 20 ppb copper, 5 ppb cadmium, and 10 ppb lead at safety limits. Finally, no matrix effect was observed on the biosensor response from wastewater samples and satisfactory recovery values of 106 ± 8% and 93 ± 7% were obtained for atrazine-zein and atrazine-PCL-Ch, respectively. A working stability of 10 h was achieved.


Subject(s)
Atrazine , Biosensing Techniques , Herbicides , Microalgae , Zein , Lignin , Biosensing Techniques/methods , Electrodes
3.
Biosensors (Basel) ; 13(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36979557

ABSTRACT

Today, complete blood count (CBC) analyses are highly automated and allow for high throughput and accurate and reliable results. However, new analytical tools are in great demand to provide simple, rapid and cost-effective management of hematological indices in home care patients. Chronic disease monitoring at home has become a benefit for patients who are finding cost savings in programs designed to monitor/treat patients in offsite locations. This review reports the latest trends in point-of-care (POC) diagnostics useful for home testing of key hematological counts that may be affected during home therapy treatment.


Subject(s)
Home Care Services , Point-of-Care Systems , Humans , Point-of-Care Testing , Monitoring, Physiologic
4.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770853

ABSTRACT

Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.


Subject(s)
Chlamydomonas reinhardtii , Humans , Chlamydomonas reinhardtii/metabolism , Photosynthesis , Dietary Supplements , Plants
5.
J Biol Chem ; 298(10): 102375, 2022 10.
Article in English | MEDLINE | ID: mdl-35970392

ABSTRACT

Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases. Schistosoma mansoni HDAC8 (SmHDAC8) is highly expressed in all life cycle stages of the parasite, and selective inhibition is required in order to avoid undesirable off-target effects in the host. Herein, by X-ray crystal structures of SmHDAC8-inhibitor complexes, biochemical and phenotypic studies, we found two schistosomicidal spiroindoline derivatives binding a novel site, next to Trp198, on the enzyme surface. We determined that by acting on this site, either by mutation of the Trp198 or by compound binding, a decrease in the activity of the enzyme is achieved. Remarkably, this allosteric site differs from the human counterpart; rather, it is conserved in all Schistosoma species, as well as Rhabidoptera and Trematoda classes, thus paving the way for the design of HDAC8-selective allosteric inhibitors with improved properties.


Subject(s)
Anthelmintics , Helminth Proteins , Histone Deacetylase Inhibitors , Histone Deacetylases , Schistosoma mansoni , Animals , Humans , Binding Sites , Helminth Proteins/chemistry , Helminth Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Anthelmintics/chemistry , Anthelmintics/pharmacology , Crystallography, X-Ray
6.
Biosensors (Basel) ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35735549

ABSTRACT

Herein, we report a proof-of-concept algal cytosensor for the electrochemical quantification of bacteria in wastewater, exploiting the green photosynthetic alga Chlamydomonas reinhardtii immobilized on carbon black (CB) nanomodified screen-printed electrodes. The CB nanoparticles are used as nanomodifiers, as they are able to sense the oxygen produced by the algae and thus the current increases when algae are exposed to increasing concentrations of bacteria. The sensor was tested on both standard solutions and real wastewater samples for the detection Escherichia coli in a linear range of response from 100 to 2000 CFU/100 mL, showing a limit of detection of 92 CFU/100 mL, in agreement with the maximum E. coli concentration established by the Italian law for wastewater (less than 5000 CFU/100 mL). This bacterium was exploited as a case study target of the algal cytosensor to demonstrate its ability as an early warning analytical system to signal heavy loads of pathogens in waters leaving the wastewater treatment plants. Indeed, the cytosensor is not selective towards E. coli but it is capable of sensing all the bacteria that induce the algae oxygen evolution by exploiting the effect of their interaction. Other known toxicants, commonly present in wastewater, were also analyzed to test the cytosensor selectivity, with any significant effect, apart from atrazine, which is a specific target of the D1 protein of the Chlamydomonas photosystem II. However, the latter can also be detected by chlorophyll fluorescence simultaneously to the amperometric measurements. The matrix effect was evaluated, and the recovery values were calculated as 105 ± 8, 83 ± 7, and 88 ± 7% for 1000 CFU/100 mL of E. coli in Lignano, San Giorgio, and Pescara wastewater samples, respectively.


Subject(s)
Chlamydomonas reinhardtii , Escherichia coli Infections , Carbon/chemistry , Electrodes , Escherichia coli , Oxygen , Soot , Wastewater
7.
Int J Mol Sci ; 23(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35269725

ABSTRACT

Generation of the 3' overhang is a critical step during homologous recombination (HR) and replication fork rescue processes. This event is usually performed by a series of DNA nucleases and/or helicases. The nuclease NurA and the ATPase HerA, together with the highly conserved MRE11/RAD50 proteins, play an important role in generating 3' single-stranded DNA during archaeal HR. Little is known, however, about HerA-NurA function and activation of this fundamental and complicated DNA repair process. Herein, we analyze the functional relationship among NurA, HerA and the single-strand binding protein SSB from Saccharolubus solfataricus. We demonstrate that SSB clearly inhibits NurA endonuclease activity and its exonuclease activities also when in combination with HerA. Moreover, we show that SSB binding to DNA is greatly stimulated by the presence of either NurA or NurA/HerA. In addition, if on the one hand NurA binding is not influenced, on the other hand, HerA binding is reduced when SSB is present in the reaction. In accordance with what has been observed, we have shown that HerA helicase activity is not stimulated by SSB. These data suggest that, in archaea, the DNA end resection process is governed by the strictly combined action of NurA, HerA and SSB.


Subject(s)
Archaeal Proteins , Sulfolobus solfataricus , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , DNA/metabolism , DNA Helicases/metabolism , DNA Repair , DNA, Single-Stranded/metabolism , Sulfolobus solfataricus/metabolism
8.
Biosens Bioelectron ; 205: 114101, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35202984

ABSTRACT

The scenery of molecular diagnostics for infectious diseases is rapidly evolving to respond to the COVID-19 epidemic. The sensitivity and specificity of diagnostics, along with speed and accuracy, are crucial requirements for effective analytical tools to address the disease spreading around the world. Emerging diagnostic devices combine the latest trends in isothermal amplification methods for nucleic acids with state-of-the-art biosensing systems, intending to bypass roadblocks encountered in the last 2 years of the pandemic. Isothermal nucleic acid amplification is a simple procedure that quickly and efficiently accumulates nucleic acid sequences at a constant temperature, without the need for sophisticated equipment. The integration of isothermal amplification into portable biosensing devices confers high sensitivity and improves screening at the point of need in low-resource settings. This review reports the latest trends reached in this field with the latest examples of isothermal amplification-powered biosensors for detecting SARS-CoV-2, with different configurations, as well as their intrinsic advantages and disadvantages.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral , SARS-CoV-2/genetics , Sensitivity and Specificity
9.
Biosensors (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34562898

ABSTRACT

The recent global events of COVID-19 in 2020 have alerted the world to the risk of viruses and their impacts on human health, including their impacts in the social and economic sectors. Rapid tests are urgently required to enable antigen detection and thus to facilitate rapid and simple evaluations of contagious individuals, with the overriding goal to delimitate spread of the virus among the population. Many efforts have been achieved in recent months through the realization of novel diagnostic tools for rapid, affordable, and accurate analysis, thereby enabling prompt responses to the pandemic infection. This review reports the latest results on electrochemical and optical biosensors realized for the specific detection of SARS-CoV-2 antigens, thus providing an overview of the available diagnostics tested and marketed for SARS-CoV-2 antigens as well as their pros and cons.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Biosensing Techniques , COVID-19/immunology , Electrochemical Techniques , Humans , Reagent Kits, Diagnostic , Sensitivity and Specificity
10.
Materials (Basel) ; 14(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199583

ABSTRACT

Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.

11.
J Nanobiotechnology ; 19(1): 145, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001124

ABSTRACT

The indiscriminate use of herbicides in agriculture contributes to soil and water pollution, with important endangering consequences on the ecosystems. Among the available analytical systems, algal biosensors have demonstrated to be valid tools thanks to their high sensitivity, cost-effectiveness, and eco-design. Herein, we report the development of a dual electro-optical biosensor for herbicide monitoring, based on Chlamydomonas reinhardtii whole cells immobilised on paper-based screen-printed electrodes modified with carbon black nanomaterials. To this aim, a systematic study was performed for the selection and characterisation of a collection among 28 different genetic variants of the alga with difference response behaviour towards diverse herbicide classes. Thus, CC125 strain was exploited as case study for the study of the analytical parameters. The biosensor was tested in standard solutions and real samples, providing high sensitivity (detection limit in the pico/nanomolar), high repeatability (RSD of 5% with n = 100), long lasting working (10 h) and storage stability (3 weeks), any interference in the presence of heavy metals and insecticides, and low matrix effect in drinking water and moderate effect in surface one.


Subject(s)
Biosensing Techniques , Chlamydomonas reinhardtii , Electrodes , Enzymes, Immobilized , Herbicides , Drinking Water , Ecosystem , Environmental Monitoring , Immobilization/methods , Insecticides , Nanostructures , Soot
12.
Talanta ; 224: 121854, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33379070

ABSTRACT

Herein we describe the design and synthesis of novel artificial peptides mimicking the plastoquinone binding niche of the D1 protein from the green photosynthetic alga Chlamydomonas reinhardtii, also able to bind herbicides. In particular, molecular dynamics (MD) simulations were performed to model in silico the behaviour of three peptides, D1Pep70-H, D1Pep70-S264K and D1Pep70-S268C, as genetic variants with different affinity towards the photosynthetic herbicide atrazine. Then the photosynthetic peptides were functionalised with quantum dots for the development of a hybrid optosensor for the detection of atrazine, one of the most employed herbicides for weed control in agriculture as well as considered as a putative endocrine disruptor case study. The excellent agreement between computational and experimental results self consistently shows resistance or super-sensitivity toward the atrazine target, with detection limits in the µg/L concentration range, meeting the requirements of E.U. legislation.


Subject(s)
Chlamydomonas reinhardtii , Endocrine Disruptors , Herbicides , Quantum Dots , Herbicides/analysis , Peptides , Photosystem II Protein Complex
13.
Biosensors (Basel) ; 10(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33203038

ABSTRACT

Gas sensors have been object of increasing attention by the scientific community in recent years. For the development of the sensing element, two major trends seem to have appeared. On one hand, the possibility of creating complex structures at the nanoscale level has given rise to ever more sensitive sensors based on metal oxides and metal-polymer combinations. On the other hand, gas biosensors have started to be developed, thanks to their intrinsic ability to be selective for the target analyte. In this review, we analyze the recent progress in both areas and underline their strength, current problems, and future perspectives.


Subject(s)
Biosensing Techniques , Environmental Monitoring/methods , Nanocomposites , Electrochemical Techniques , Metals , Oxides , Polymers
14.
Int J Biol Macromol ; 163: 817-823, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32653377

ABSTRACT

Biomimetic design represents an emerging field for improving knowledge of natural molecules, as well as to project novel artificial tools with specific functions for biosensing. Effective strategies have been exploited to design artificial bioreceptors, taking inspiration from complex supramolecular assemblies. Among them, size-minimization strategy sounds promising to provide bioreceptors with tuned sensitivity, stability, and selectivity, through the ad hoc manipulation of chemical species at the molecular scale. Herein, a novel biomimetic peptide enabling herbicide binding was designed bioinspired to the D1 protein of the Photosystem II of the green alga Chlamydomonas reinhardtii. The D1 protein portion corresponding to the QB plastoquinone binding niche is capable of interacting with photosynthetic herbicides. A 50-mer peptide in the region of D1 protein from the residue 211 to 280 was designed in silico, and molecular dynamic simulations were performed alone and in complex with atrazine. An equilibrated structure was obtained with a stable pocked for atrazine binding by three H-bonds with SER222, ASN247, and HIS272 residues. Computational data were confirmed by fluorescence spectroscopy and circular dichroism on the peptide obtained by automated synthesis. Atrazine binding at nanomolar concentrations was followed by fluorescence spectroscopy, highlighting peptide suitability for optical sensing of herbicides at safety limits.


Subject(s)
Atrazine/pharmacology , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/physiology , Photosynthesis , Photosystem II Protein Complex/metabolism , Amino Acid Sequence , Biomimetics/methods , Molecular Dynamics Simulation , Peptides/chemistry , Photosynthesis/drug effects , Photosystem II Protein Complex/chemistry , Protein Conformation , Spectrometry, Fluorescence , Thermodynamics
15.
Biosens Bioelectron ; 163: 112299, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32568697

ABSTRACT

Enzymes immobilisation represents a critical issue in the design of biosensors to achieve standardization as well as suitable analytical performances in terms of sensitivity, selectivity, and stability. In this work electrospray deposition (ESD) has been exploited as a novel technique for the immobilisation of laccase enzyme on carbon black modified screen-printed electrodes. The aim is to fabricate an amperometric biosensor for phenolic compound detection. The electrodes produced by ESD have been analysed by scanning electron microscopy and characterised electrochemically to prove that this immobilisation technique is suited to manufacture high performance biosensors. The results show that the laccase enzyme maintains its activity after undergoing the electrospray ionisation process and deposition and the fabricated biosensor has improved performances in terms of storage (up to 3 months at room temperature) and working (up to 25 measurements on the same electrode) stability. The laccase-based biosensor has been tested for phenolic compound detection, with catechol as target analyte, in the linear range 2.5-50 µM, with 2.0 µM limit of detection, without interference from lead, cadmium, atrazine, and paraoxon, and without matrix effect in drinking, surface, and wastewater.


Subject(s)
Biosensing Techniques , Laccase , Carbon , Electrodes , Enzymes, Immobilized , Soot
16.
Biosens Bioelectron ; 159: 112203, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32364935

ABSTRACT

A novel amperometric algae-based biosensor was developed for the detection of photosynthetic herbicides in river water. The green photosynthetic algae Chlamydomonas reinhardtii was immobilized on carbon black modified screen-printed electrodes, exploiting carbon black as smart nanomaterial to monitor changes in algae oxygen evolution during the photosynthetic process. The decrease of oxygen evolution, occurring in the presence of herbicides, results in a decrease of current signals by means of amperometric measurements, in an analyte concentration dependent manner. Atrazine as case study herbicide was detected in a concentration range of 0.1 and 50 µM, with a linear range from 0.1 to 5 µM and a detection limit of 1 nM. No interference was observed in presence of 100 ppb arsenic, 20 ppb copper, 5 ppb cadmium, 10 ppb lead, 10 ppb bisphenol A, and 1 ppb paraoxon, tested as safety limits. A ~25% matrix effect and satisfactory recovery values of 107 ± 10% and 96 ± 8% were obtained in river water for 3 and 5 µM of atrazine, respectively. Stability studies were also performed obtaining a high working stability up to 10 h and repeatability with an RSD of 1.1% (n = 12), as well as a good storage stability up to 3 weeks.


Subject(s)
Biosensing Techniques/methods , Herbicides/analysis , Microalgae/chemistry , Nanoparticles , Oxygen/analysis , Soot/chemistry , Atrazine/analysis , Electrochemical Techniques , Reproducibility of Results , Rivers/chemistry , Water Pollutants, Chemical/analysis
17.
Article in English | MEDLINE | ID: mdl-32391344

ABSTRACT

The current international pharmaceutical scenario encompasses several steps in drug production, with complex and extremely long procedures. In the last few decades, scientific research has been trying to offer valid and reliable solutions to replace or support conventional techniques, in order to facilitate drug development procedures. These innovative approaches may have extremely positive effects in the production chain, supplying fast, and cost-effective quality as well as safety tests on active pharmaceutical ingredients (APIs) and their excipients. In this context, the exploitation of electrochemical paper-based analytical devices (ePADs) is still in its infancy, but is particularly promising in the detection of APIs and excipients in tablets, capsules, suppositories, and injections, as well as for pharmacokinetic bioanalysis in real samples.

18.
Mater Sci Eng C Mater Biol Appl ; 111: 110744, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279763

ABSTRACT

Herein we report a multiplated and biopolymeric-based optical bioassay for organophosphate detection based on the use of acetylcholinesterase (AChE) as biocomponent and biopolymeric electrospun fibrous mats as eco-designed supports for AChE immobilisation. The principle of the detection relays on the decrease of enzymatic activity due to the capability of the organophosphorus pesticides to irreversibly inhibit AChE, which is optically detected using Ellman colorimetric method. The proposed bioassay consists in a novel, cost-effective, and multiplex-based 96-well system, in combination with customised biopolymeric membranes modified with AChE, with the aim to deliver a sustainable analytical tool. Indeed, the designed set-up should provide and guarantee several advantages, including: i) the re-use of plastic multi-plate with the only replacement of polymer dishes in the case of inhibition absence; ii) the exploiting of the properties of the immobilised enzyme, i.e. multiple analysis using the same amount of enzyme, reducing the AChE amount for analysis. In detail, three different biopolymers (i.e. polylactic acid (PLA), polycaprolactone (PCL), and poly-hydroxybutyrate-co-hydroxyvalerate (PHBV)) were investigated and morphologically characterised, as supports for enzyme immobilisation, to identify the optimal one. Among them, PHBV was selected as the best support to immobilise AChE by cross-linking method. The analytical features of the bioassay were then assessed by measuring standard solutions of paraoxon in a range of concentrations between 10 and 100 ppb, achieving a linear range up to 60 ppb and a detection limit of 10 ppb. Thus, the suitability of this sustainable bioassay to detect organophosphate at ppb level was demonstrated.


Subject(s)
Acetylcholinesterase/metabolism , Colorimetry/methods , Pesticides/analysis , Acetylcholinesterase/chemistry , Biopolymers/chemistry , Dithionitrobenzoic Acid/chemistry , Dithionitrobenzoic Acid/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Limit of Detection , Microarray Analysis , Paraoxon/analysis , Polyesters/chemistry , Reproducibility of Results
19.
Biosens Bioelectron ; 156: 112033, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32174547

ABSTRACT

Advances in cutting-edge technologies including nanotechnology, microfluidics, electronic engineering, and material science have boosted a new era in the design of robust and sensitive biosensors. In recent years, carbon black has been re-discovered in the design of electrochemical (bio)sensors thanks to its interesting electroanalytical properties, absence of treatment requirement, cost-effectiveness (c.a. 1 €/Kg), and easiness in the preparation of stable dispersions. Herein, we present an overview of the literature on carbon black-based electrochemical (bio)sensors, highlighting current trends and possible challenges to this rapidly developing area, with a special focus on the fabrication of carbon black-based electrodes in the realisation of sensors and biosensors (e.g. enzymatic, immunosensors, and DNA-based).


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Nanostructures/chemistry , Soot/chemistry , Animals , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Equipment Design , Humans , Paper
20.
Trends Biotechnol ; 38(3): 334-347, 2020 03.
Article in English | MEDLINE | ID: mdl-31706693

ABSTRACT

In addition to their use in biomass production and bioremediation, algae have been extensively exploited in biosensing applications. Algae-based biosensors have demonstrated potential for sensitive, sustainable, and multiplexed detection of analytes of agroenvironmental and security interest. Their advantages include the availability of different algal bioreceptors including whole cells and their photosynthetic subcomponents, their potential to be integrated into dual transduction miniaturized devices, and the opportunity for continuous environmental monitoring. Despite obstacles including limited stability and selectivity, algae-based biosensing is a realistic prospect that has some recent effective applications. Strategic exploitation of cutting-edge technologies including materials science, nanotechnology, microfluidics, and genome editing will help to achieve the full potential of algae-based sensors.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Chlorophyta/physiology , Microfluidic Analytical Techniques/instrumentation , Atrazine/toxicity , Biotechnology/instrumentation , Biotechnology/methods , CRISPR-Cas Systems , Environmental Monitoring , Equipment Design , Gene Editing , Lab-On-A-Chip Devices , Nanostructures/chemistry , Photosynthesis , Synechocystis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...