Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 89(11): e0098723, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37943057

ABSTRACT

IMPORTANCE: Increased ship traffic in the Arctic region raises the risk of oil spills. With an average sea depth of 1,000 m, there is a growing concern over the potential release of oil sinking in the form of marine oil snow into deep Arctic waters. At increasing depth, the oil-degrading community is exposed to increasing hydrostatic pressure, which can reduce microbial activity. However, microbes thriving in polar regions may adapt to low temperature by modulation of membrane fluidity, which is also a well-known adaptation to high hydrostatic pressure. At mild hydrostatic pressures up to 8-12 MPa, we did not observe an altered microbial activity or community composition, whereas comparable studies using deep-sea or sub-Arctic microbial communities with in situ temperatures of 4-5°C showed pressure-induced effects at 10-15 MPa. Our results suggest that the psychrophilic nature of the underwater microbial communities in the Arctic may be featured by specific traits that enhance their fitness at increasing hydrostatic pressure.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Hydrostatic Pressure , Arctic Regions , Biodegradation, Environmental , Seawater/microbiology , Bacteria , Hydrocarbons
2.
Microorganisms ; 10(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35630422

ABSTRACT

Giant pandas feed almost exclusively on bamboo but miss lignocellulose-degrading genes. Their gut microbiome may contribute to their nutrition; however, the limited access to pandas makes experimentation difficult. In vitro incubation of dung samples is used to infer gut microbiome activity. In pandas, such tests indicated that green leaves are largely fermented to ethanol at neutral pH and yellow pith to lactate at acidic pH. Pandas may feed on either green leaves or yellow pith within the same day, and it is unclear how pH, dung sample, fermentation products and supplied bamboo relate to one another. Additionally, the gut microbiome contribution to solid bamboo digestion must be appropriately assessed. Here, gut microbiomes derived from dung samples with mixed colors were used to ferment green leaves, also by artificially adjusting the initial pH. Gut microbiomes digestion of solid lignocellulose accounted for 30-40% of the detected final fermentation products. At pH 6.5, mixed-color dung samples had the same fermentation profile as green dung samples (mainly alcohols), while adjusting the initial pH to 4.5 resulted in the profile of yellow dung samples (mainly lactate). Metaproteomics confirmed that gut microbiomes attacked hemicellulose, and that the panda's alpha amylase was the predominant enzyme (up to 75%).

3.
J Environ Manage ; 316: 115244, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35598451

ABSTRACT

The impact of piezosensitive microorganisms is generally underestimated in the ecology of underwater environments exposed to increasing hydrostatic pressure (HP), including the biodegradation of crude oil components. Yet, no isolated pressure-loving (piezophile) microorganism grows optimally on hydrocarbons, and no isolated piezophile at all has a HP optimum <10 MPa (e.g. 1000 m below sea water level). Piezosensitive heterotrophs are thus largely accountable for oil clean up < 10 MPa, however, they are affected by such a mild HP increase in ways which are not completely clear. In a first study, the application of a bioelectrochemical system (called "oil-spill snorkel") enhanced the alkane oxidation capacity in sediments collected at surface water but tested up to 10 MPa. Here, the fingerprint left on transcript abundance was studied to explore which metabolic routes are 1) supported by snorkels application and 2) negatively impacted by HP increase. Transcript abundance was comparable for beta-oxidation across all treatments (also at a taxonomical level), while the metabolism of acetyl-CoA was highly impacted: at either 0.1 or 10 MPa, snorkels supported acetyl-CoA oxidation within the TCA cycle, while in negative controls using non-conductive rods several alternative routes for acetyl-CoA were stimulated (including those leading to internal carbon reserves e.g. 2,3 butanediol and dihydroxyacetone). In general, increased HP had opposite effects as compared to snorkels, thus indicating that snorkels could enhance hydrocarbons oxidation by alleviating in part the stressing effects imposed by increased HP on the anaerobic, respiratory electron transport chain. 16S rRNA gene analysis of sediments and biofilms on snorkels suggest a crosstalk between oil-degrading, sulfate-reducing microorganisms and sulfur oxidizers. In fact, no sulfur was deposited on snorkels, however, iron, aluminum and phosphorous were found to preferentially deposit on snorkels at 10 MPa. This data indicates that a passive BES such as the oil-spill snorkel can mitigate the stress imposed by increased HP on piezosensitive microorganisms (up to 10 MPa) without being subjected to passivation. An improved setup applying these principles can further support this deep-sea bioremediation strategy.


Subject(s)
Petroleum Pollution , Petroleum , Acetyl Coenzyme A , Alkanes , Biodegradation, Environmental , Geologic Sediments/chemistry , Hydrocarbons/metabolism , Hydrostatic Pressure , Petroleum/metabolism , RNA, Ribosomal, 16S/genetics , Respiration
5.
Bioresour Technol ; 333: 125217, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33951580

ABSTRACT

Photobiological hydrogen (H2) production is a promising renewable energy source. HydA hydrogenases of green algae are efficient but O2-sensitive and compete for electrons with CO2-fixation. Recently, we established a photoautotrophic H2 production system based on anaerobic induction, where the Calvin-Benson cycle is inactive and O2 scavenged by an absorbent. Here, we employed thin layer cultures, resulting in a three-fold increase in H2 production relative to bulk CC-124 cultures (50 µg chlorophyll/ml, 350 µmol photons m-2 s-1). Productivity was maintained when increasing the light intensity to 1000 µmol photons m-2s-1 and the cell density to 150 µg chlorophyll/ml. Remarkably, the L159I-N230Y photosystem II mutant and the pgrl1 photosystem I cyclic electron transport mutant produced 50% more H2 than CC-124, while the pgr5 mutant generated 250% more (1.2 ml H2/ml culture in six days). The photosynthetic apparatus of the pgr5 mutant and its in vitro HydA activity remained remarkably stable.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Hydrogen/metabolism , Oxygen/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Sunlight
7.
FEMS Microbiol Ecol ; 96(11)2020 11 03.
Article in English | MEDLINE | ID: mdl-32816016

ABSTRACT

Hydrostatic pressures (HP) <30-40 MPa are often considered mild, and their impact on petroleum biodegradation seldom considered. However, the frequent use of nutrient-rich media in lab-scale high-pressure reactors may exaggerate HP importance by resulting in a strong growth stimulation as compared to oligotrophic marine environments. Here, we tested coastal seawater microbial communities, presumably enriched in pressure-sensitive microorganisms. Limiting environmental conditions for growth were applied (i.e. low temperature [5°C], no added nutrients) and HP tested at 0.1 and 15 MPa, using crude oils from three different reservoirs. The cell number was not affected by HP contrary to the microbial community composition (based on 16S rRNA gene and 16S rRNA sequences). The most predominant genera were Zhongshania, Pseudomonas and Colwellia. The enrichment of Zhongshania was crude-oil dependent and comparable at 0.1 and 15 MPa, thus showing a piezotolerant phenotype under the present conditions; Pseudomonas' was crude-oil dependent at 0.1 MPa but unclear at 15 MPa. Colwellia was selectively enriched in the absence of crude oil and suppressed at 15 MPa. HP shaped the assemblage of oil-degrading communities even at mild levels (i.e. 15 MPa), and should thus be considered as a fundamental factor to assess oil bioremediation along the water column.


Subject(s)
Microbiota , Petroleum , Biodegradation, Environmental , Hydrocarbons , Hydrostatic Pressure , Nutrients , RNA, Ribosomal, 16S/genetics , Seawater
8.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32436568

ABSTRACT

Deep-sea environments can become contaminated with petroleum hydrocarbons. The effects of hydrostatic pressure (HP) in the deep sea on microbial oil degradation are poorly understood. Here, we performed long-term enrichments (100 days) from a natural cold seep while providing optimal conditions to sustain high hydrocarbon degradation rates. Through enrichments performed at increased HP and ambient pressure (AP) and by using control enrichments with marine broth, we demonstrated that both pressure and carbon source can have a big impact on the community structure. In contrast to previous studies, hydrocarbonoclastic operational taxonomic units (OTUs) remained dominant at both AP and increased HP, suggesting piezotolerance of these OTUs over the tested pressure range. Twenty-three isolates were obtained after isolation and dereplication. After recultivation at increased HP, an Alcanivorax sp. showed promising piezotolerance in axenic culture. Furthermore, preliminary co-cultivation tests indicated synergistic growth between some isolates, which shows promise for future synthetic community construction. Overall, more insights into the effect of increased HP on oil-degrading communities were obtained as well as several interesting isolates, e.g. a piezotolerant hydrocarbonoclastic bacterium for future deep-sea bioaugmentation investigation.


Subject(s)
Petroleum , Seawater , Bacteria/genetics , Biodegradation, Environmental , Hydrocarbons
9.
Front Microbiol ; 11: 530, 2020.
Article in English | MEDLINE | ID: mdl-32300339

ABSTRACT

The giant panda is known worldwide for having successfully moved to a diet almost exclusively based on bamboo. Provided that no lignocellulose-degrading enzyme was detected in panda's genome, bamboo digestion is believed to depend on its gut microbiome. However, pandas retain the digestive system of a carnivore, with retention times of maximum 12 h. Cultivation of their unique gut microbiome under controlled laboratory conditions may be a valid tool to understand giant pandas' dietary habits, and provide valuable insights about what component of lignocellulose may be metabolized. Here, we collected gut microbiomes from fresh fecal samples of a giant panda (either entirely green or yellow stools) and supplied them with green leaves or yellow pith (i.e., the peeled stem). Microbial community composition was substrate dependent, and resulted in markedly different fermentation profiles, with yellow pith fermented to lactate and green leaves to lactate, acetate and ethanol, the latter to strikingly high concentrations (∼3%, v:v, within 3.5 h). Microbial metaproteins pointed to hemicellulose rather than cellulose degradation. The alpha-amylase from the giant panda (E.C. 3.2.1.1) was the predominant identified metaprotein, particularly in reactors inoculated with pellets derived from fecal samples (up to 60%). Gut microbiomes assemblage was most prominently impacted by the change in substrate (either leaf or pith). Removal of soluble organics from inocula to force lignocellulose degradation significantly enriched Bacteroides (in green leaf) and Escherichia/Shigella (in yellow pith). Overall, different substrates (either leaf or pith) markedly shaped gut microbiome assemblies and fermentation profiles. The biochemical profile of fermentation products may be an underestimated factor contributing to explain the peculiar dietary behavior of giant pandas, and should be implemented in large scale studies together with short-term lab-scale cultivation of gut microbiomes.

10.
Water Res ; 173: 115520, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32018171

ABSTRACT

Degradation of petroleum hydrocarbons (HC) in sediments is often limited by the availability of electron acceptors. By allowing long-distance electron transport (LDET) between anoxic sediments and oxic overlying water, bioelectrochemical snorkels may stimulate the regeneration of sulphate in the anoxic sediment thereby accelerating petroleum HC degradation. Cable bacteria can also mediate LDET between anoxic and oxic sediment layers and thus theoretically stimulate petroleum HC degradation. Here, we quantitatively assessed the impact of cable bacteria and snorkels on the degradation of alkanes in marine sediment from Aarhus Bay (Denmark). After seven weeks, cable bacteria and snorkels accelerated alkanes degradation by +24 and +25%, respectively, compared to control sediment with no cable bacteria nor snorkel. The combination of snorkels and cable bacteria further enhanced alkanes degradation (+46%). Higher degradation rates were sustained by LDET-induced sulphide removal rather than, as initially hypothesized, sulphate regeneration. Cable bacteria are thus overlooked players in the self-healing capacity of crude-oil contaminated sediments, and may inspire novel remediation treatments upon hydrocarbon spillage.


Subject(s)
Petroleum Pollution , Petroleum , Bacteria , Biodegradation, Environmental , Decontamination , Denmark , Geologic Sediments , Hydrocarbons
11.
Appl Microbiol Biotechnol ; 104(1): 365-375, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31768610

ABSTRACT

Microbially induced CaCO3 precipitation (MICP) can give concrete self-healing properties. MICP agents are typically bacterial endospores which are coated into shelled granules, infused into expanded clay, or embedded into superabsorbent polymer (SAP). When small cracks appear in the cured concrete, the encapsulation is broken and the metabolic CO2 production from the germinated bacteria causes healing of the cracks by precipitation of CaCO3. Such systems are being tested empirically at large scales, but survival of endospores through preparation and application, as well as germination and growth kinetics of the germinated vegetative cells, remains poorly resolved. We encapsulated endospores of Bacillus subtilis and Bacillus alkalinitrilicus in crosslinked acrylamide-based SAP and quantified their germination, growth, and, in the case of B. alkalinitrilicus, CaCO3 precipitation potential. The endospores survived crosslinking and desiccation inside the polymer matrix. Microcalorimetry and microscopy showed that ~ 80% of the encapsulated endospores of both strains readily germinated after rehydration of freeze-dried SAP. Germinated cells grew into dense colonies of cells inside the SAP, and those of B. alkalinitrilicus calcified with up to 0.3 g CaCO3 produced per g desiccated SAP when incubated aerobically. Measurements by planar optodes indicated that the precipitation rates were inherently oxygen limited due to diffusional constraints, rather than limited by electron donor or Ca2+ availability. Such oxygen limitation will limit MICP in all water-saturated and oxygen-dependent systems, and MICP agents based on anaerobic bacteria, e.g., nitrate reducers, should be developed to broaden the applicability of bioactive self-healing concretes to wet and waterlogged environments.


Subject(s)
Bacillus subtilis/metabolism , Bacillus/metabolism , Calcium Carbonate/metabolism , Chemical Precipitation , Polymers/chemistry , Acrylamide/chemistry , Bacillus/growth & development , Bacillus subtilis/growth & development , Bacteria, Aerobic/growth & development , Bacteria, Aerobic/metabolism , Biochemical Phenomena , Carbon Dioxide/metabolism , Oxygen/metabolism , Spores, Bacterial/metabolism , Water/metabolism
12.
Appl Environ Microbiol ; 85(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31126939

ABSTRACT

In polyextremophiles, i.e., microorganisms growing preferentially under multiple extremes, synergistic effects may allow growth when application of the same extremes alone would not. High hydrostatic pressure (HP) is rarely considered in studies of polyextremophiles, and its role in potentially enhancing tolerance to other extremes remains unclear. Here, we investigated the HP-temperature response in Clostridium paradoxum, a haloalkaliphilic moderately thermophilic endospore-forming bacterium, in the range of 50 to 70°C and 0.1 to 30 MPa. At ambient pressure, growth limits were extended from the previously reported 63°C to 70°C, defining C. paradoxum as an actual thermophile. Concomitant application of high HP and temperature compared to standard conditions (i.e., ambient pressure and 50°C) remarkably enhanced growth, with an optimum growth rate observed at 22 MPa and 60°C. HP distinctively defined C. paradoxum physiology, as at 22 MPa biomass, production increased by 75% and the release of fermentation products per cell decreased by >50% compared to ambient pressure. This metabolic modulation was apparently linked to an energy-preserving mechanism triggered by HP, involving a shift toward pyruvate as the preferred energy and carbon source. High HPs decreased cell damage, as determined by Syto9 and propidium iodide staining, despite no organic solute being accumulated intracellularly. A distinct reduction in carbon chain length of phospholipid fatty acids (PLFAs) and an increase in the amount of branched-chain PLFAs occurred at high HP. Our results describe a multifaceted, cause-and-effect relationship between HP and cell metabolism, stressing the importance of applying HP to define the boundaries for life under polyextreme conditions.IMPORTANCE Hydrostatic pressure (HP) is a fundamental parameter influencing biochemical reactions and cell physiology; however, it is less frequently applied than other factors, such as pH, temperature, and salinity, when studying polyextremophilic microorganisms. In particular, how HP affects microbial tolerance to other and multiple extremes remains unclear. Here, we show that under polyextreme conditions of high pH and temperature, Clostridium paradoxum demonstrates a moderately piezophilic nature as cultures grow to highest cell densities and most efficiently at a specific combination of temperature and HP. Our results highlight the importance of considering HP when exploring microbial physiology under extreme conditions and thus have implications for defining the limits for microbial life in nature and for optimizing industrial bioprocesses occurring under multiple extremes.


Subject(s)
Cell Membrane/chemistry , Clostridium/chemistry , Clostridium/physiology , Energy Metabolism , Hydrostatic Pressure , Temperature
13.
ISME J ; 13(4): 1004-1018, 2019 04.
Article in English | MEDLINE | ID: mdl-30542078

ABSTRACT

Petroleum hydrocarbons reach the deep-sea following natural and anthropogenic factors. The process by which they enter deep-sea microbial food webs and impact the biogeochemical cycling of carbon and other elements is unclear. Hydrostatic pressure (HP) is a distinctive parameter of the deep sea, although rarely investigated. Whether HP alone affects the assembly and activity of oil-degrading communities remains to be resolved. Here we have demonstrated that hydrocarbon degradation in deep-sea microbial communities is lower at native HP (10 MPa, about 1000 m below sea surface level) than at ambient pressure. In long-term enrichments, increased HP selectively inhibited obligate hydrocarbon-degraders and downregulated the expression of beta-oxidation-related proteins (i.e., the main hydrocarbon-degradation pathway) resulting in low cell growth and CO2 production. Short-term experiments with HP-adapted synthetic communities confirmed this data, revealing a HP-dependent accumulation of citrate and dihydroxyacetone. Citrate accumulation suggests rates of aerobic oxidation of fatty acids in the TCA cycle were reduced. Dihydroxyacetone is connected to citrate through glycerol metabolism and glycolysis, both upregulated with increased HP. High degradation rates by obligate hydrocarbon-degraders may thus be unfavourable at increased HP, explaining their selective suppression. Through lab-scale cultivation, the present study is the first to highlight a link between impaired cell metabolism and microbial community assembly in hydrocarbon degradation at high HP. Overall, this data indicate that hydrocarbons fate differs substantially in surface waters as compared to deep-sea environments, with in situ low temperature and limited nutrients availability expected to further prolong hydrocarbons persistence at deep sea.


Subject(s)
Bacteria/metabolism , Citric Acid Cycle , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Microbiota , Petroleum/metabolism , Hydrostatic Pressure , Seawater
16.
Front Microbiol ; 9: 808, 2018.
Article in English | MEDLINE | ID: mdl-29755436

ABSTRACT

The Deepwater Horizon oil spill was one of the largest and deepest oil spills recorded. The wellhead was located at approximately 1500 m below the sea where low temperature and high pressure are key environmental characteristics. Using cells collected 4 months following the Deepwater Horizon oil spill at the Gulf of Mexico, we set up Macondo crude oil enrichments at wellhead temperature and different pressures to determine the effect of increasing depth/pressure to the in situ microbial community and their ability to degrade oil. We observed oil degradation under all pressure conditions tested [0.1, 15, and 30 megapascals (MPa)], although oil degradation profiles, cell numbers, and hydrocarbon degradation gene abundances indicated greatest activity at atmospheric pressure. Under all incubations the growth of psychrophilic bacteria was promoted. Bacteria closely related to Oleispira antarctica RB-8 dominated the communities at all pressures. At 30 MPa we observed a shift toward Photobacterium, a genus that includes piezophiles. Alphaproteobacterial members of the Sulfitobacter, previously associated with oil-degradation, were also highly abundant at 0.1 MPa. Our results suggest that pressure acts synergistically with low temperature to slow microbial growth and thus oil degradation in deep-sea environments.

17.
Biotechnol Biofuels ; 11: 69, 2018.
Article in English | MEDLINE | ID: mdl-29560024

ABSTRACT

BACKGROUND: Photobiological H2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H2, only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O2-sensitive. Sulphur deprivation is a common way to induce H2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. RESULTS: We report on the establishment of an alternative H2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O2. Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. CONCLUSION: Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H2 production, which enables industrial application of algal biohydrogen production.

19.
Trends Biotechnol ; 35(9): 860-870, 2017 09.
Article in English | MEDLINE | ID: mdl-28511936

ABSTRACT

The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.


Subject(s)
Biotechnology/methods , Petroleum Pollution , Seawater/microbiology , Water Microbiology , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental
20.
Biotechnol Biofuels ; 10: 116, 2017.
Article in English | MEDLINE | ID: mdl-28484516

ABSTRACT

BACKGROUND: Under low O2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H2 gas in nutrient-replete conditions. This process is hindered by the presence of O2, which inactivates the [FeFe]-hydrogenase enzyme responsible for H2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H2 production. The reducing power for H2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H2 evolution, although this pathway has not been described in detail. MAIN BODY: Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O2 enhanced acetate respiration rate, particularly in the light, resulting in improved H2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH2 and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H2 production. CONCLUSIONS: In Chlamydomonas, continuous H2 gas evolution is expected once low O2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.

SELECTION OF CITATIONS
SEARCH DETAIL
...