Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21355, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494427

ABSTRACT

We compared seven node vaccination strategies in twelve real-world complex networks. The node vaccination strategies are modeled as node removal on networks. We performed node vaccination strategies both removing nodes according to the initial network structure, i.e., non-adaptive approach, and performing partial node rank recalculation after node removal, i.e., semi-adaptive approach. To quantify the efficacy of each vaccination strategy, we used three epidemic spread indicators: the size of the largest connected component, the total number of infected at the end of the epidemic, and the maximum number of simultaneously infected individuals. We show that the best vaccination strategies in the non-adaptive and semi-adaptive approaches are different and that the best strategy also depends on the number of available vaccines. Furthermore, a partial recalculation of the node centrality increases the efficacy of the vaccination strategies by up to 80%.


Subject(s)
Epidemics , Humans , Epidemics/prevention & control , Vaccination
2.
J R Soc Interface ; 17(172): 20200813, 2020 11.
Article in English | MEDLINE | ID: mdl-33171073

ABSTRACT

In this paper, we model the excitation energy transfer (EET) of photosystem I (PSI) of the common pea plant Pisum sativum as a complex interacting network. The magnitude of the link energy transfer between nodes/chromophores is computed by Forster resonant energy transfer (FRET) using the pairwise physical distances between chromophores from the PDB 5L8R (Protein Data Bank). We measure the global PSI network EET efficiency adopting well-known network theory indicators: the network efficiency (Eff) and the largest connected component (LCC). We also account the number of connected nodes/chromophores to P700 (CN), a new ad hoc measure we introduce here to indicate how many nodes in the network can actually transfer energy to the P700 reaction centre. We find that when progressively removing the weak links of lower EET, the Eff decreases, while the EET paths integrity (LCC and CN) is still preserved. This finding would show that the PSI is a resilient system owning a large window of functioning feasibility and it is completely impaired only when removing most of the network links. From the study of different types of chromophore, we propose different primary functions within the PSI system: chlorophyll a (CLA) molecules are the central nodes in the EET process, while other chromophore types have different primary functions. Furthermore, we perform nodes removal simulations to understand how the nodes/chromophores malfunctioning may affect PSI functioning. We discover that the removal of the CLA triggers the fastest decrease in the Eff, confirming that CAL is the main contributors to the high EET efficiency. Our outcomes open new perspectives of research, such comparing the PSI energy transfer efficiency of different natural and agricultural plant species and investigating the light-harvesting mechanisms of artificial photosynthesis both in plant agriculture and in the field of solar energy applications.


Subject(s)
Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Chlorophyll A , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism
3.
Sci Rep ; 10(1): 3911, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127573

ABSTRACT

In this report we offer the widest comparison of links removal (attack) strategies efficacy in impairing the robustness of six real-world complex weighted networks. We test eleven different link removal strategies by computing their impact on network robustness by means of using three different measures, i.e. the largest connected cluster (LCC), the efficiency (Eff) and the total flow (TF). We find that, in most of cases, the removal strategy based on the binary betweenness centrality of the links is the most efficient to disrupt the LCC. The link removal strategies based on binary-topological network features are less efficient in decreasing the weighted measures of the network robustness (e.g. Eff and TF). Removing highest weight links first is the best strategy to decrease the efficiency (Eff) in most of the networks. Last, we found that the removal of a very small fraction of links connecting higher strength nodes or of highest weight does not affect the LCC but it determines a rapid collapse of the network efficiency Eff and the total flow TF. This last outcome raises the importance of both to adopt weighted measures of network robustness and to focus the analyses on network response to few link removals.

4.
Sci Rep ; 9(1): 10692, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337834

ABSTRACT

Here we report a comprehensive analysis of the robustness of seven high-quality real-world complex weighted networks to errors and attacks toward nodes and links. We use measures of the network damage conceived for a binary (e.g. largest connected cluster LCC, and binary efficiency Effbin) or a weighted network structure (e.g. the efficiency Eff, and the total flow TF). We find that removing a very small fraction of nodes and links with respectively higher strength and weight triggers an abrupt collapse of the weighted functioning measures while measures that evaluate the binary-topological connectedness are almost unaffected. These findings unveil a problematic response-state where the attack toward a small fraction of nodes-links returns the real-world complex networks in a connected but inefficient state. Our findings unveil how the robustness may be overestimated when focusing on the connectedness of the components only. Last, to understand how the networks robustness is affected by link weights heterogeneity, we randomly assign link weights over the topological structure of the real-world networks and we find that highly heterogeneous networks show a faster efficiency decrease under nodes-links removal: i.e. the robustness of the real-world complex networks against nodes-links removal is negatively correlated with link weights heterogeneity.

5.
Nanoscale ; 7(43): 18337-42, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26488340

ABSTRACT

We investigate the optoelectronic properties of the semiconducting (6,5) species of single-walled carbon nanotubes by measuring ultrafast transient transmission changes with 20 fs time resolution. We demonstrate that photons with energy below the lowest exciton resonance efficiently lead to linear excitation of electronic states. This finding challenges the established picture of a vanishing optical absorption below the fundamental excitonic resonance. Our result points towards below-gap electronic states as an intrinsic property of semiconducting nanotubes.

6.
Phys Chem Chem Phys ; 15(23): 9384-91, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23660801

ABSTRACT

The dynamics of excited states in α,ω-dinaphthylpolyyne, a class of linear sp-carbon chains, has been investigated by ultrafast transient absorption spectroscopy and DFT//TDDFT calculations. We show that the role of molecular conformers, in which end-capped naphthalene rings are planar or perpendicular to the polyyne plane, is fundamental for understanding both the steady state properties, such as UV-Vis absorption spectra and vibronic transitions, and the ultrafast transient absorption features. In particular, we observed in one of the conformers the ultrafast formation of a narrow photo-induced absorption band rising within 30 ps. This band can be assigned to an inter-system crossing event leading to the formation of triplet excited states.

SELECTION OF CITATIONS
SEARCH DETAIL
...