Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Proc Natl Acad Sci U S A ; 120(7): e2201076120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36749728

ABSTRACT

Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


Subject(s)
Turtles , Animals , Ecosystem , Population Dynamics
2.
Gigascience ; 112022 08 10.
Article in English | MEDLINE | ID: mdl-35946988

ABSTRACT

BACKGROUND: Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types. RESULTS: We find that storage temperature was the strongest predictor of uHMW fragment lengths. While immediate flash-freezing remains the sample preservation gold standard, samples preserved in 95% EtOH or 20-25% DMSO-EDTA showed little fragment length degradation when stored at 4°C for 6 hours. Samples in 95% EtOH or 20-25% DMSO-EDTA kept at 4°C for 1 week after dissection still yielded adequate amounts of uHMW DNA for most applications. Tissue type was a significant predictor of total DNA yield but not fragment length. Preservation solution had a smaller but significant influence on both fragment length and DNA yield. CONCLUSION: We provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for phase 1 of the Vertebrate Genomes Project, whose ultimate mission is to generate chromosome-level reference genome assemblies of all ∼70,000 extant vertebrate species.


Subject(s)
Benchmarking , Dimethyl Sulfoxide , Animals , DNA/genetics , Edetic Acid , High-Throughput Nucleotide Sequencing/methods , Molecular Weight , Sequence Analysis, DNA/methods
3.
Genes (Basel) ; 13(7)2022 07 18.
Article in English | MEDLINE | ID: mdl-35886053

ABSTRACT

The Hawaiian monk seal (HMS) is the single extant species of tropical earless seals of the genus Neomonachus. The species survived a severe bottleneck in the late 19th century and experienced subsequent population declines until becoming the subject of a NOAA-led species recovery effort beginning in 1976 when the population was fewer than 1000 animals. Like other recovering species, the Hawaiian monk seal has been reported to have reduced genetic heterogeneity due to the bottleneck and subsequent inbreeding. Here, we report a chromosomal reference assembly for a male animal produced using a variety of methods. The final assembly consisted of 16 autosomes, an X, and portions of the Y chromosomes. We compared variants in this animal to other HMS and to a frequently sequenced human sample, confirming about 12% of the variation seen in man. To confirm that the reference animal was representative of the HMS, we compared his sequence to that of 10 other individuals and noted similarly low variation in all. Variation in the major histocompatibility (MHC) genes was nearly absent compared to the orthologous human loci. Demographic analysis predicts that Hawaiian monk seals have had a long history of small populations preceding the bottleneck, and their current low levels of heterozygosity may indicate specialization to a stable environment. When we compared our reference assembly to that of other species, we observed significant conservation of chromosomal architecture with other pinnipeds, especially other phocids. This reference should be a useful tool for future evolutionary studies as well as the long-term management of this species.


Subject(s)
Seals, Earless , Animals , Chromosomes , Genomic Instability , Hawaii/epidemiology , Humans , Male , Seals, Earless/genetics
4.
Microbiology (Reading) ; 167(10)2021 10.
Article in English | MEDLINE | ID: mdl-34661520

ABSTRACT

Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD- mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.


Subject(s)
Heme/biosynthesis , Hydroxymethylbilane Synthase/metabolism , Plasmodium falciparum/enzymology , Biosynthetic Pathways , Escherichia coli/genetics , Genetic Complementation Test , Hydroxymethylbilane Synthase/genetics , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Uroporphyrinogen III Synthetase/genetics , Uroporphyrinogen III Synthetase/metabolism , Uroporphyrinogens/metabolism
7.
Am J Med Genet A ; 185(11): 3259-3265, 2021 11.
Article in English | MEDLINE | ID: mdl-34169650

ABSTRACT

Victor McKusick's many contributions to medicine are legendary, but his magnum opus is Mendelian Inheritance in Man (MIM), his catalog of Mendelian phenotypes and their associated genes. The catalog, originally published in 1966 in book form, became available on the internet as Online Mendelian Inheritance in Man (OMIM®) in 1987. The first of 12 editions of MIM included 1486 entries; this number has increased to over 25,000 entries in OMIM as of April 2021, which demonstrates the growth of knowledge about Mendelian phenotypes and their genes through the years. OMIM now has over 20,000 unique users a day, including users from every country in the world. Many of the early decisions made by McKusick, such as to maintain MIM data in a computer-readable format, to separate phenotype entries from those for genes, and to give phenotypes and genes MIM numbers, have proved essential to the long-term utility and flexibility of his catalog. Based on his extensive knowledge of genetics and vision of its future in the field of medicine, he developed a framework for the capture and summary of information from the published literature on phenotypes and their associated genes; this catalog continues to serve as an indispensable resource to the genetics community.


Subject(s)
Databases, Genetic/history , Genetics, Medical/history , Chromosome Mapping , History, 20th Century , History, 21st Century , Humans
8.
J Hered ; 112(6): 540-548, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34146095

ABSTRACT

The Puma lineage within the family Felidae consists of 3 species that last shared a common ancestor around 4.9 million years ago. Whole-genome sequences of 2 species from the lineage were previously reported: the cheetah (Acinonyx jubatus) and the mountain lion (Puma concolor). The present report describes a whole-genome assembly of the remaining species, the jaguarundi (Puma yagouaroundi). We sequenced the genome of a male jaguarundi with 10X Genomics linked reads and assembled the whole-genome sequence. The assembled genome contains a series of scaffolds that reach the length of chromosome arms and is similar in scaffold contiguity to the genome assemblies of cheetah and puma, with a contig N50 = 100.2 kbp and a scaffold N50 = 49.27 Mbp. We assessed the assembled sequence of the jaguarundi genome using BUSCO, aligned reads of the sequenced individual and another published female jaguarundi to the assembled genome, annotated protein-coding genes, repeats, genomic variants and their effects with respect to the protein-coding genes, and analyzed differences of the 2 jaguarundis from the reference mitochondrial genome. The jaguarundi genome assembly and its annotation were compared in quality, variants, and features to the previously reported genome assemblies of puma and cheetah. Computational analyzes used in the study were implemented in transparent and reproducible way to allow their further reuse and modification.


Subject(s)
Felidae , Puma , Animals , Female , Genome , Genomics , Male , Molecular Sequence Annotation , Puma/genetics
9.
Front Cell Dev Biol ; 9: 621018, 2021.
Article in English | MEDLINE | ID: mdl-33937227

ABSTRACT

Two large studies of case-parent trios ascertained through a proband with a non-syndromic orofacial cleft (OFC, which includes cleft lip and palate, cleft lip alone, or cleft palate alone) were used to test for possible gene-environment (G × E) interaction between genome-wide markers (both observed and imputed) and self-reported maternal exposure to smoking, alcohol consumption, and multivitamin supplementation during pregnancy. The parent studies were as follows: GENEVA, which included 1,939 case-parent trios recruited largely through treatment centers in Europe, the United States, and Asia, and 1,443 case-parent trios from the Pittsburgh Orofacial Cleft Study (POFC) also ascertained through a proband with an OFC including three major racial/ethnic groups (European, Asian, and Latin American). Exposure rates to these environmental risk factors (maternal smoking, alcohol consumption, and multivitamin supplementation) varied across studies and among racial/ethnic groups, creating substantial differences in power to detect G × E interaction, but the trio design should minimize spurious results due to population stratification. The GENEVA and POFC studies were analyzed separately, and a meta-analysis was conducted across both studies to test for G × E interaction using the 2 df test of gene and G × E interaction and the 1 df test for G × E interaction alone. The 2 df test confirmed effects for several recognized risk genes, suggesting modest G × E effects. This analysis did reveal suggestive evidence for G × Vitamin interaction for CASP9 on 1p36 located about 3 Mb from PAX7, a recognized risk gene. Several regions gave suggestive evidence of G × E interaction in the 1 df test. For example, for G × Smoking interaction, the 1 df test suggested markers in MUSK on 9q31.3 from meta-analysis. Markers near SLCO3A1 also showed suggestive evidence in the 1 df test for G × Alcohol interaction, and rs41117 near RETREG1 (a.k.a. FAM134B) also gave suggestive significance in the meta-analysis of the 1 df test for G × Vitamin interaction. While it remains quite difficult to obtain definitive evidence for G × E interaction in genome-wide studies, perhaps due to small effect sizes of individual genes combined with low exposure rates, this analysis of two large case-parent trio studies argues for considering possible G × E interaction in any comprehensive study of complex and heterogeneous disorders such as OFC.

10.
Life Sci Alliance ; 4(4)2021 04.
Article in English | MEDLINE | ID: mdl-33514656

ABSTRACT

Reference genome fidelity is critically important for genome wide association studies, yet most vary widely from the study population. A typical whole genome sequencing approach implies short-read technologies resulting in fragmented assemblies with regions of ambiguity. Further information is lost by economic necessity when genotyping populations, as lower resolution technologies such as genotyping arrays are commonly used. Here, we present a phased reference genome for Canis lupus familiaris using high molecular weight DNA-sequencing technologies. We tested wet laboratory and bioinformatic approaches to demonstrate a minimum workflow to generate the 2.4 gigabase genome for a Labrador Retriever. The de novo assembly required eight Oxford Nanopore R9.4 flowcells (∼23X depth) and running a 10X Genomics library on the equivalent of one lane of an Illumina NovaSeq S1 flowcell (∼88X depth), bringing the cost of generating a nearly complete reference genome to less than $10K (USD). Mapping of short-read data from 10 Labrador Retrievers against this reference resulted in 1% more aligned reads versus the current reference (CanFam3.1, P < 0.001), and a 15% reduction of variant calls, increasing the chance of identifying true, low-effect size variants in a genome-wide association studies. We believe that by incorporating the cost to produce a full genome assembly into any large-scale genotyping project, an investigator can improve study power, decrease costs, and optimize the overall scientific value of their study.


Subject(s)
Genome-Wide Association Study , Genome , Genomics , Wolves/classification , Wolves/genetics , Animals , Chromosome Mapping , Computational Biology , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Whole Genome Sequencing
11.
Mol Ecol Resour ; 20(6): 1668-1681, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32365406

ABSTRACT

Captive populations provide a valuable insurance against extinctions in the wild. However, they are also vulnerable to the negative impacts of inbreeding, selection and drift. Genetic information is therefore considered a critical aspect of conservation management. Recent developments in sequencing technologies have the potential to improve the outcomes of management programmes; however, the transfer of these approaches to applied conservation has been slow. The scimitar-horned oryx (Oryx dammah) is a North African antelope that has been extinct in the wild since the early 1980s and is the focus of a large-scale and long-term reintroduction project. To enable the selection of suitable founder individuals, facilitate post-release monitoring and improve captive breeding management, comprehensive genomic resources are required. Here, we used 10X Chromium sequencing together with Hi-C contact mapping to develop a chromosomal-level genome assembly for the species. The resulting assembly contained 29 chromosomes with a scaffold N50 of 100.4 Mb, and displayed strong chromosomal synteny with the cattle genome. Using resequencing data from six additional individuals, we demonstrated relatively high genetic diversity in the scimitar-horned oryx compared to other mammals, despite it having experienced a strong founding event in captivity. Additionally, the level of diversity across populations varied according to management strategy. Finally, we uncovered a dynamic demographic history that coincided with periods of climate variation during the Pleistocene. Overall, our study provides a clear example of how genomic data can uncover valuable insights into captive populations and contributes important resources to guide future management decisions of an endangered species.


Subject(s)
Antelopes , Endangered Species , Genome , Animals , Antelopes/genetics , Chromosomes , Inbreeding , Synteny
12.
Appl Environ Microbiol ; 85(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31101612

ABSTRACT

Many aldehydes, such as furfural, are present in high quantities in lignocellulose lysates and are fermentation inhibitors, which makes biofuel production from this abundant carbon source extremely challenging. Cbei_3974 has recently been identified as an aldo-keto reductase responsible for partial furfural resistance in Clostridium beijerinckii Rational engineering of this enzyme could enhance the furfural tolerance of this organism, thereby improving biofuel yields. We report an extensive characterization of Cbei_3974 and a single-crystal X-ray structure of Cbei_3974 in complex with NADPH at a resolution of 1.75 Å. Docking studies identified residues involved in substrate binding, and an activity screen revealed the substrate tolerance of the enzyme. Hydride transfer, which is partially rate limiting under physiological conditions, occurs from the pro-R hydrogen of NADPH. Enzyme isotope labeling revealed a temperature-independent enzyme isotope effect of unity, indicating that the enzyme does not use dynamic coupling for catalysis and suggesting that the active site of the enzyme is optimally configured for catalysis with the substrate tested.IMPORTANCE Here we report the crystal structure and biophysical properties of an aldehyde reductase that can detoxify furfural, a common inhibitor of biofuel fermentation found in lignocellulose lysates. The data contained here will serve as a guide for protein engineers to develop improved enzyme variants that would impart furfural resistance to the microorganisms used in biofuel production and thus lead to enhanced biofuel yields from this sustainable resource.


Subject(s)
Aldehyde Reductase/chemistry , Bacterial Proteins/chemistry , Clostridium beijerinckii/chemistry , Furaldehyde/metabolism , Aldehyde Reductase/metabolism , Bacterial Proteins/metabolism , Clostridium beijerinckii/enzymology , Inactivation, Metabolic
13.
Chembiochem ; 20(22): 2807-2812, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31016852

ABSTRACT

An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled "heavy" dihydrofolate reductases and their natural-abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present as hotspots for mutagenesis. Detailed understanding of the biophysics of enzyme catalysis based on insights gained from analysis of "heavy" enzymes might eventually allow routine engineering of enzymes to catalyse reactions of choice.


Subject(s)
Alcohol Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/chemistry , Bacteria/enzymology , Biocatalysis , Carbon Isotopes/chemistry , Catalytic Domain , Deuterium/chemistry , Kinetics , Nitrogen Isotopes/chemistry , Protein Engineering
14.
Bioinformatics ; 35(4): 571-578, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30084993

ABSTRACT

MOTIVATION: De novo copy number deletions have been implicated in many diseases, but there is no formal method to date that identifies de novo deletions in parent-offspring trios from capture-based sequencing platforms. RESULTS: We developed Minimum Distance for Targeted Sequencing (MDTS) to fill this void. MDTS has similar sensitivity (recall), but a much lower false positive rate compared to less specific CNV callers, resulting in a much higher positive predictive value (precision). MDTS also exhibited much better scalability. AVAILABILITY AND IMPLEMENTATION: MDTS is freely available as open source software from the Bioconductor repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , DNA Copy Number Variations , Sequence Deletion , Software , Computational Biology
15.
Nucleic Acids Res ; 47(D1): D1038-D1043, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30445645

ABSTRACT

For over 50 years Mendelian Inheritance in Man has chronicled the collective knowledge of the field of medical genetics. It initially cataloged the known X-linked, autosomal recessive and autosomal dominant inherited disorders, but grew to be the primary repository of curated information on both genes and genetic phenotypes and the relationships between them. Each phenotype and gene is given a separate entry assigned a stable, unique identifier. The entries contain structured summaries of new and important information based on expert review of the biomedical literature. OMIM.org provides interactive access to the knowledge repository, including genomic coordinate searches of the gene map, views of genetic heterogeneity of phenotypes in Phenotypic Series, and side-by-side comparisons of clinical synopses. OMIM.org also supports computational queries via a robust API. All entries have extensive targeted links to other genomic resources and additional references. Updates to OMIM can be found on the update list or followed through the MIMmatch service. Updated user guides and tutorials are available on the website. As of September 2018, OMIM had over 24,600 entries, and the OMIM Morbid Map Scorecard had 6,259 molecularized phenotypes connected to 3,961 genes.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Information Storage and Retrieval/methods , Genetic Association Studies/methods , Genetics, Medical/methods , Genomics/methods , Humans , Inheritance Patterns/genetics , Internet
16.
Genet Epidemiol ; 43(1): 37-49, 2019 02.
Article in English | MEDLINE | ID: mdl-30246882

ABSTRACT

We previously demonstrated how sharing of rare variants (RVs) in distant affected relatives can be used to identify variants causing a complex and heterogeneous disease. This approach tested whether single RVs were shared by all sequenced affected family members. However, as with other study designs, joint analysis of several RVs (e.g., within genes) is sometimes required to obtain sufficient statistical power. Further, phenocopies can lead to false negatives for some causal RVs if complete sharing among affected is required. Here, we extend our methodology (Rare Variant Sharing, RVS) to address these issues. Specifically, we introduce gene-based analyses, a partial sharing test based on RV sharing probabilities for subsets of affected relatives and a haplotype-based RV definition. RVS also has the desirable feature of not requiring external estimates of variant frequency or control samples, provides functionality to assess and address violations of key assumptions, and is available as open source software for genome-wide analysis. Simulations including phenocopies, based on the families of an oral cleft study, revealed the partial and complete sharing versions of RVS achieved similar statistical power compared with alternative methods (RareIBD and the Gene-Based Segregation Test), and had superior power compared with the pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) linkage statistic. In studies of multiplex cleft families, analysis of rare single nucleotide variants in the exome of 151 affected relatives from 54 families revealed no significant excess sharing in any one gene, but highlighted different patterns of sharing revealed by the complete and partial sharing tests.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Pedigree , Sequence Analysis, DNA , Cleft Palate/genetics , Computer Simulation , Exome/genetics , Genetic Heterogeneity , Haplotypes/genetics , Humans , Models, Genetic , Phenotype , Probability , Risk Factors , Exome Sequencing
17.
J Am Coll Cardiol ; 72(6): 605-615, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30071989

ABSTRACT

BACKGROUND: Thoracic aortic aneurysms progressively enlarge and predispose to acute aortic dissections. Up to 25% of individuals with thoracic aortic disease harbor an underlying Mendelian pathogenic variant. An evidence-based strategy for selection of genes to test in hereditary thoracic aortic aneurysm and dissection (HTAAD) helps inform family screening and intervention to prevent life-threatening thoracic aortic events. OBJECTIVES: The purpose of this study was to accurately identify genes that predispose to HTAAD using the Clinical Genome Resource (ClinGen) framework. METHODS: We applied the semiquantitative ClinGen framework to assess presumed gene-disease relationships between 53 candidate genes and HTAAD. Genes were classified as causative for HTAAD if they were associated with isolated thoracic aortic disease and were clinically actionable, triggering routine aortic surveillance, intervention, and family cascade screening. All gene-disease assertions were evaluated by a pre-defined curator-expert pair and subsequently discussed with an expert panel. RESULTS: Genes were classified based on the strength of association with HTAAD into 5 categories: definitive (n = 9), strong (n = 2), moderate (n = 4), limited (n = 15), and no reported evidence (n = 23). They were further categorized by severity of associated aortic disease and risk of progression. Eleven genes in the definitive and strong groups were designated as "HTAAD genes" (category A). Eight genes were classified as unlikely to be progressive (category B) and 4 as low risk (category C). The remaining genes were recent genes with an uncertain classification or genes with no evidence of association with HTAAD. CONCLUSIONS: The ClinGen framework is useful to semiquantitatively assess the strength of gene-disease relationships for HTAAD. Gene categories resulting from the curation may inform clinical laboratories in the development, interpretation, and subsequent clinical implications of genetic testing for patients with aortic disease.


Subject(s)
Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/diagnosis , Aortic Dissection/genetics , Genetic Predisposition to Disease/genetics , Genetic Testing/standards , Female , Genetic Testing/methods , Humans , Male , Reproducibility of Results
18.
Mol Genet Genomic Med ; 5(5): 570-579, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28944239

ABSTRACT

BACKGROUND: Nonsyndromic oral clefts are craniofacial malformations, which include cleft lip with or without cleft palate. The etiology for oral clefts is complex with both genetic and environmental factors contributing to risk. Previous genome-wide association (GWAS) studies have identified multiple loci with small effects; however, many causal variants remain elusive. METHODS: In this study, we address this by specifically looking for rare, potentially damaging variants in family-based data. We analyzed both whole exome sequence (WES) data and whole genome sequence (WGS) data in multiplex cleft families to identify variants shared by affected individuals. RESULTS: Here we present the results from these analyses. Our most interesting finding was from a single Syrian family, which showed enrichment of nonsynonymous and potentially damaging rare variants in two genes: CASP9 and FAT4. CONCLUSION: Neither of these candidate genes has previously been associated with oral clefts and, if confirmed as contributing to disease risk, may indicate novel biological pathways in the genetic etiology for oral clefts.

19.
Methods Enzymol ; 596: 23-41, 2017.
Article in English | MEDLINE | ID: mdl-28911773

ABSTRACT

Heavy isotope labeling of enzymes slows protein motions without disturbing the electrostatics and can therefore be used to probe the role of dynamics in enzyme catalysis. To identify the structural elements responsible for dynamic effects, individual segments of an enzyme can be labeled and the resulting effect on the kinetics of the reaction can be measured. Such hybrid isotopomers can be constructed by expressed protein ligation, in which complementary labeled and unlabeled peptide segments are prepared by recombinant gene expression and linked by means of chemical ligation. The construction of such hybrid isotopomers is exemplified here with the paradigmatic enzyme dihydrofolate reductase (DHFR) from Escherichia coli.


Subject(s)
Biocatalysis , Enzyme Assays/methods , Isotope Labeling/methods , Tetrahydrofolate Dehydrogenase/chemistry , Enzyme Assays/instrumentation , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Isotopes/chemistry , Kinetics , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Static Electricity , Tetrahydrofolate Dehydrogenase/genetics
20.
Am J Hum Genet ; 100(6): 895-906, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552198

ABSTRACT

With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: "Definitive," "Strong," "Moderate," "Limited," "No Reported Evidence," or "Conflicting Evidence." Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...