Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Clin Electrophysiol ; 9(10): 2149-2162, 2023 10.
Article in English | MEDLINE | ID: mdl-37656099

ABSTRACT

BACKGROUND: Computational models of fibrosis-mediated, re-entrant left atrial (LA) arrhythmia can identify possible substrate for persistent atrial fibrillation (AF) ablation. Contemporary models use a 1-size-fits-all approach to represent electrophysiological properties, limiting agreement between simulations and patient outcomes. OBJECTIVES: The goal of this study was to test the hypothesis that conduction velocity (Ï´) modulation in persistent AF models can improve simulation agreement with clinical arrhythmias. METHODS: Patients with persistent AF (n = 37) underwent ablation and were followed up for ≥2 years to determine post-ablation outcomes: AF, atrial flutter (AFL), or no recurrence. Patient-specific LA models (n = 74) were constructed using pre-ablation and ≥90 days' post-ablation magnetic resonance imaging data. Simulated pacing gauged in silico arrhythmia inducibility due to AF-like rotors or AFL-like macro re-entrant tachycardias. A physiologically plausible range of Ï´ values (±10 or 20% vs. baseline) was tested, and model/clinical agreement was assessed. RESULTS: Fifteen (41%) patients had a recurrence with AF and 6 (16%) with AFL. Arrhythmia was induced in 1,078 of 5,550 simulations. Using baseline Ï´, model/clinical agreement was 46% (34 of 74 models), improving to 65% (48 of 74) when any possible Ï´ value was used (McNemar's test, P = 0.014). Ï´ modulation improved model/clinical agreement in both pre-ablation and post-ablation models. Pre-ablation model/clinical agreement was significantly greater for patients with extensive LA fibrosis (>17.2%) and an elevated body mass index (>32.0 kg/m2). CONCLUSIONS: Simulations in persistent AF models show a 41% relative improvement in model/clinical agreement when Ï´ is modulated. Patient-specific calibration of Ï´ values could improve model/clinical agreement and model usefulness, especially in patients with higher body mass index or LA fibrosis burden. This could ultimately facilitate better personalized modeling, with immediate clinical implications.


Subject(s)
Atrial Fibrillation , Atrial Flutter , Humans , Atrial Fibrillation/surgery , Heart Atria/diagnostic imaging , Heart Atria/surgery , Atrial Flutter/surgery , Fibrosis , Computer Simulation
2.
J Am Heart Assoc ; 12(16): e030500, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37581387

ABSTRACT

Background Postablation arrhythmia recurrence occurs in ~40% of patients with persistent atrial fibrillation. Fibrotic remodeling exacerbates arrhythmic activity in persistent atrial fibrillation and can play a key role in reentrant arrhythmia, but emergent interaction between nonconductive ablation-induced scar and native fibrosis (ie, residual fibrosis) is poorly understood. Methods and Results We conducted computational simulations in pre- and postablation left atrial models reconstructed from late gadolinium enhanced magnetic resonance imaging scans to test the hypothesis that ablation in patients with persistent atrial fibrillation creates new substrate conducive to recurrent arrhythmia mediated by anchored reentry. We trained a random forest machine learning classifier to accurately pinpoint specific nonconductive tissue regions (ie, areas of ablation-delivered scar or vein/valve boundaries) with the capacity to serve as substrate for anchored reentry-driven recurrent arrhythmia (area under the curve: 0.91±0.03). Our analysis suggests there is a distinctive nonconductive tissue pattern prone to serving as arrhythmogenic substrate in postablation models, defined by a specific size and proximity to residual fibrosis. Conclusions Overall, this suggests persistent atrial fibrillation ablation transforms substrate that favors functional reentry (ie, rotors meandering in excitable tissue) into an arrhythmogenic milieu more conducive to anchored reentry. Our work also indicates that explainable machine learning and computational simulations can be combined to effectively probe mechanisms of recurrent arrhythmia.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Atrial Fibrillation/pathology , Cicatrix , Heart Atria/diagnostic imaging , Heart Atria/surgery , Heart Atria/pathology , Fibrosis , Computer Simulation , Machine Learning , Catheter Ablation/adverse effects , Catheter Ablation/methods , Recurrence , Treatment Outcome
3.
J Cardiovasc Electrophysiol ; 34(2): 302-312, 2023 02.
Article in English | MEDLINE | ID: mdl-36571158

ABSTRACT

INTRODUCTION: Late-gadolinium enhancement magnetic resonance (LGE-MRI) imaging is increasingly used in management of atrial fibrillation (AFib) patients. Here, we assess the usefulness of LGE-MRI-based fibrosis quantification to predict arrhythmia recurrence in patients undergoing cryoballoon ablation. Our secondary goal was to compare two widely used fibrosis quantification methods. METHODS: In 102 AF patients undergoing LGE-MRI and cryoballoon ablation (mean age 62 years; 64% male; 59% paroxysmal AFib), atrial fibrosis was quantified using the pixel intensity histogram (PIH) and image intensity ratio (IIR) methods. PIH segmentations were completed by a third-party provider as part of the standard of care at our hospital; Image intensity ratio (IIR) segmentations of the same scans were carried out in our lab using a commercially available software package. Fibrosis burdens and spatial distributions for the two methods were compared. Patients were followed prospectively for recurrent arrhythmia following ablation. RESULTS: Average PIH fibrosis was 15.6 ± 5.8% of the left atrial (LA) volume. Depending on threshold (IIRthr ), the average IIR fibrosis (% of LA wall surface area) ranged from 5.0 ± 7.2% (IIRthr = 1.2) to 37.4 ± 10.9% (IIRthr = 0.97). An IIRthr of 1.03 demonstrated the greatest agreement between the methods, but spatial overlap of fibrotic areas delineated by the two methods was modest (Sorenson Dice coefficient: 0.49). Fourty-two patients (41.2%) had recurrent arrhythmia. PIH fibrosis successfully predicted recurrence (HR 1.07; p = .02) over a follow-up period of 362 ± 149 days; regardless of IIRthr , IIR fibrosis did not predict recurrence. CONCLUSIONS: PIH-based volumetric assessment of atrial fibrosis was modestly predictive of arrhythmia recurrence following cryoballoon ablation in this cohort. IIR-based fibrosis was not predictive of recurrence for any of the IIRthr values tested, and the overlap in designated areas of fibrosis between the PIH and IIR methods was modest. Caution must therefore be exercised when interpreting LA fibrosis from LGE-MRI, since the values and spatial pattern are methodology-dependent.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Male , Middle Aged , Female , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Atrial Fibrillation/pathology , Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods , Heart Atria/diagnostic imaging , Heart Atria/surgery , Heart Atria/pathology , Fibrosis , Catheter Ablation/methods
4.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33942719

ABSTRACT

Cardiac magnetic resonance imaging (MRI) has revealed fibrosis in embolic stroke of undetermined source (ESUS) patients comparable to levels seen in atrial fibrillation (AFib). We used computational modeling to understand the absence of arrhythmia in ESUS despite the presence of putatively pro-arrhythmic fibrosis. MRI-based atrial models were reconstructed for 45 ESUS and 45 AFib patients. The fibrotic substrate's arrhythmogenic capacity in each patient was assessed computationally. Reentrant drivers were induced in 24/45 (53%) ESUS and 22/45 (49%) AFib models. Inducible models had more fibrosis (16.7 ± 5.45%) than non-inducible models (11.07 ± 3.61%; p<0.0001); however, inducible subsets of ESUS and AFib models had similar fibrosis levels (p=0.90), meaning that the intrinsic pro-arrhythmic substrate properties of fibrosis in ESUS and AFib are indistinguishable. This suggests that some ESUS patients have latent pre-clinical fibrotic substrate that could be a future source of arrhythmogenicity. Thus, our work prompts the hypothesis that ESUS patients with fibrotic atria are spared from AFib due to an absence of arrhythmia triggers.


The heart usually beats with a regular rhythm to pump the blood that carries oxygen and nutrients to different organs. Sometimes, alterations in the heart's rhythm known as arrhythmias can occur. Atrial fibrillation, also called AFib, is a type of arrhythmia in which the heart beats rapidly and irregularly, causing abnormal blood-flow that can lead to the formation of blood clots. If one of these blood clots travels to the brain, it can block a blood vessel, causing a stroke. However, many strokes occur without any evidence of AFib. One subset of strokes that are not associated with AFib are embolic strokes of undetermined source (ESUS), which account for 25% of all strokes. By definition ESUS and AFib do not occur together, but both are associated with similar elevated levels of disease-related remodeling (i.e., fibrosis) in the heart tissue, which appears when the heart is injured. Fibrosis impairs the heart's normal electrical activity. Bifulco et al. wanted to determine whether there is some fundamental difference in fibrosis between people with AFib and those who have had an ESUS event. To do this, they used a computational approach to model the geometries and patterns of fibrosis of the hearts of 45 ESUS patients and 45 patients with AFib, essentially producing a virtual version of each patient's heart. Bifulco et al. then applied a virtual pace-maker (working in overdrive mode) to each heart model to determine whether electrical inputs that can lead to AFib had different effects on ESUS and AFib patients. The results showed that the electrical inputs had similar effects in all of the heart models. This led Bifulco et al. to conclude that ESUS and AFib patients have indistinguishable patterns of fibrosis. The key difference is that ESUS patients are missing the trigger to initiate the fibrillation process ­ if atrial fibrosis is the proverbial tinderbox, these triggers are the spark needed to ignite a fire. Further research, including confirmation of Bifulco et al.'s findings in live patients, will be needed to confirm the hypothesis that ESUS patients lack AFib primarily due to an absence of triggers. If this is indeed the case, these findings may make it easier to identify ESUS patients at higher risk for AFib or further strokes. Additionally, a better understanding of fibrosis as a link between stroke and AFib will help clinicians provide better, more personalized treatments, for example guiding whether a patient should take blood thinners or undergo more rigorous cardiac monitoring.


Subject(s)
Atrial Fibrillation/complications , Computer Simulation/statistics & numerical data , Embolic Stroke/diagnosis , Aged , Atrial Fibrillation/etiology , Embolic Stroke/etiology , Female , Fibrosis/complications , Fibrosis/diagnostic imaging , Heart Atria/diagnostic imaging , Heart Atria/pathology , Humans , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/statistics & numerical data , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...