Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Toxicol Lett ; 391: 45-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092154

ABSTRACT

We present the first computational model of the pathophysiological consequences of phosgene-induced lung injury in porcine subjects. Data from experiments previously performed in several cohorts of large healthy juvenile female pigs (111 data points from 37 subjects), including individual arterial blood gas readings, respiratory rate and heart rate, were used to develop the computational model. Close matches are observed between model outputs (PaO2 and PaCO2) and the experimental data, for both terminally anaesthetised and conscious subjects. The model was applied to investigate the effectiveness of continuous positive airway pressure (CPAP) as a pre-hospital treatment method when treatment is initiated at different time points post exposure. The model predicts that clinically relevant benefits are obtained when 10 cmH2O CPAP is initiated within approximately 8 h after exposure. Supplying low-flow oxygen (40%) rather than medical air produced larger clinical benefits than applying higher CPAP pressure levels. This new model can be used as a tool for conducting investigations into ventilation strategies and pharmaceutical treatments for chemical lung injury of diverse aetiology, and for helping to refine and reduce the use of animals in future experimental studies.


Subject(s)
Lung Injury , Phosgene , Humans , Swine , Female , Animals , Continuous Positive Airway Pressure , Phosgene/toxicity , Lung , Oxygen
2.
Med Sci Law ; 64(2): 113-120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37350115

ABSTRACT

Tapentadol is a relatively new synthetic opioid analgesic prescribed for the management of moderate to severe pain. While tapentadol has been shown to be more effective than traditional opioid analgesics, it still carries the risk of addiction, abuse, and misuse. In Australia, tapentadol has become one of the top five most commonly prescribed opioid drugs, with prescriptions increasing by approximately 150,000 each year since it first became available. The rapid increase in tapentadol prescriptions has occurred in parallel to an increasing number of post-mortem tapentadol detections in South Australia (SA). While the number of deaths in SA related to tapentadol use was low in the current study, findings suggest that an increasing trend of deaths involving tapentadol will continue in parallel to a rapidly increasing number of prescriptions, mirroring trends associated with traditional opioids in SA. As a comparatively new opioid analgesic, monitoring future trends will be important to determine if additional prescribing education, intervention, or restrictions are required.


Subject(s)
Analgesics, Opioid , Drug-Related Side Effects and Adverse Reactions , Humans , Tapentadol , Incidence , Australia/epidemiology
3.
BMC Genomics ; 24(1): 623, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858046

ABSTRACT

BACKGROUND: Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS: To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS: Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.


Subject(s)
DNA Methylation , Gene Expression Regulation , Adult , Humans , Promoter Regions, Genetic , Cell Differentiation/genetics , DNA , CpG Islands
4.
PLoS Pathog ; 19(9): e1011666, 2023 09.
Article in English | MEDLINE | ID: mdl-37733817

ABSTRACT

Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.


Subject(s)
CD4-Positive T-Lymphocytes , Salmonella Infections , Mice , Animals , Monocytes , Vaccines, Attenuated , Inflammation
5.
J Anesth ; 37(5): 794-805, 2023 10.
Article in English | MEDLINE | ID: mdl-37498387

ABSTRACT

Volatile anesthetic agents are increasingly widely used for critical care sedation. There are concerns that sevoflurane presents a risk of renal injury when used in this role. RCTs comparing the use of critical care sevoflurane sedation with any control in humans were systematically identified using MEDLINE, Cochrane CENTRAL, web of Science, and CINAHL (until May 2022), if they presented comparative data on renal function or serum inorganic fluoride levels. Pooled SMDs (95% CI) were calculated where possible after assessment of quality with GRADE and risk of bias with ROB-2. Eight studies analyzing 793 patients were included. The median duration of use of critical care sevoflurane sedation was 4.8 [IQR 3.5-9.2] hours; however, most trials also included a period of prior intraoperative use. No significant difference was found in serum creatinine at 1 day (SMD 0.05, 95% CI - 0.12 to 0.21), 48 h (SMD = - 0.04; 95% Cl - 0.25 to 0.17), 72 h (SMD = - 0.15; 95% CI - 0.45 to 0.15), and at discharge (SMD = - 0.1; 95% CI - 0.3 to 0.13) between the sevoflurane group and the control groups. Creatinine clearance was measured in two studies at 48 h with no significant difference (SMD = - 0.13; 95% Cl - 0.38 to 0.11). Levels of serum inorganic fluoride were significantly elevated in patients where sevoflurane was used. Sevoflurane was not associated with renal failure when used for critical care sedation of fewer than 72-h duration, despite the elevation of serum fluoride. Longer-term studies are currently inadequate, including in patients with compromised renal function, to further evaluate the role of sevoflurane in this setting.Trial registration PROSPERO (CRD42022333099).


Subject(s)
Anesthetics , Fluorides , Humans , Sevoflurane/adverse effects , Kidney/physiology , Critical Care
6.
Proc Natl Acad Sci U S A ; 120(20): e2214942120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155842

ABSTRACT

Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.


Subject(s)
Neoplasms , Succinic Acid , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Succinates , Humans
8.
ACS Nano ; 17(9): 8598-8612, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37078604

ABSTRACT

Biomimetic cubic phases can be used for protein encapsulation in a variety of applications such as biosensors and drug delivery. Cubic phases with a high concentration of cholesterol and phospholipids were obtained herein. It is shown that the cubic phase structure can be maintained with a higher concentration of biomimetic membrane additives than has been reported previously. Opposing effects on the curvature of the membrane were observed upon the addition of phospholipids and cholesterol. Furthermore, the coronavirus fusion peptide significantly increased the negative curvature of the biomimetic membrane with cholesterol. We show that the viral fusion peptide can undergo structural changes leading to the formation of hydrophobic α-helices that insert into the lipid bilayer. This is of high importance, as a fusion peptide that induces increased negative curvature as shown by the formation of inverse hexagonal phases allows for greater contact area between two membranes, which is required for viral fusion to occur. The cytotoxicity assay showed that the toxicity toward HeLa cells was dramatically decreased when the cholesterol or peptide level in the nanoparticles increased. This suggests that the addition of cholesterol can improve the biocompatibility of the cubic phase nanoparticles, making them safer for use in biomedical applications. As the results, this work improves the potential for the biomedical end-use applications of the nonlamellar lipid nanoparticles and shows the need of systematic formulation studies due to the complex interplay of all components.


Subject(s)
Coronavirus , Humans , Biomimetics , HeLa Cells , Peptides/pharmacology , Peptides/chemistry , Phospholipids/chemistry , Lipid Bilayers/chemistry , Cholesterol
9.
BMJ Open ; 13(4): e066346, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024248

ABSTRACT

INTRODUCTION: Social determinants of health (SDH) are contributors to health inequities experienced by some children with cerebral palsy and pose barriers to families engaging with complex and fragmented healthcare systems. There is emerging evidence to support 'social prescribing' interventions that systematically identify SDH concerns and refer patients to non-medical social care support and services to address their needs. To date, social prescribing has not been trialled specifically for children with neurodevelopmental disabilities, including cerebral palsy, in Australia. This study aims to codesign a social prescribing programme to address SDH concerns of children with cerebral palsy and their families who attend one of the three tertiary paediatric rehabilitation services in New South Wales, Australia. METHODS AND ANALYSIS: This is a qualitative multi-site study conducted at the three NSW paediatric hospitals' rehabilitation departments using a codesign approach. Children aged 12-18 years with cerebral palsy, parents/caregivers of children (aged 0-18 years) with cerebral palsy, and clinicians will be involved in all stages to codesign the social prescribing programme. The study will consist of three components: (1) 'what we need', (2) 'creating the pathways' and (3) 'finalising and sign off'. This project is overseen by two advisory groups: one group of young adults with cerebral palsy and one group of parents of young people with cerebral palsy. The study will be guided by the biopsychosocial ecological framework, and analysis will follow Braun and Clark's thematic approach. ETHICS AND DISSEMINATION: The study protocol was approved by the human research ethics committee of the Sydney Children's Hospitals Network. This codesign study will inform a future pilot study of feasibility and acceptability, then if indicated, a pilot clinical trial of efficacy. We will collaborate with all project stakeholders to disseminate findings and undertake further research to build sustainable and scalable models of care. TRIAL REGISTRATION NUMBER: ACTRN12622001459718.


Subject(s)
Cerebral Palsy , Adolescent , Child , Humans , Young Adult , Australia , Cerebral Palsy/psychology , Parents , Pilot Projects , Social Determinants of Health
10.
Resuscitation ; 186: 109758, 2023 05.
Article in English | MEDLINE | ID: mdl-36871922

ABSTRACT

OBJECTIVE: We aimed to use a high-fidelity computational model that captures key interactions between the cardiovascular and pulmonary systems to investigate whether current CPR protocols could potentially be improved. METHODS: We developed and validated the computational model against available human data. We used a global optimisation algorithm to find CPR protocol parameters that optimise the outputs associated with return of spontaneous circulation in a cohort of 10 virtual subjects. RESULTS: Compared with current protocols, myocardial tissue oxygen volume was more than 5 times higher, and cerebral tissue oxygen volume was nearly doubled, during optimised CPR. While the optimal maximal sternal displacement (5.5 cm) and compression ratio (51%) found using our model agreed with the current American Heart Association guidelines, the optimal chest compression rate was lower (67 compressions min-1). Similarly, the optimal ventilation strategy was more conservative than current guidelines, with an optimal minute ventilation of 1500 ml min-1 and inspired fraction of oxygen of 80%. The end compression force was the parameter with the largest impact on CO, followed by PEEP, the compression ratio and the CC rate. CONCLUSIONS: Our results indicate that current CPR protocols could potentially be improved. Excessive ventilation could be detrimental to organ oxygenation during CPR, due to the negative haemodynamic effect of increased pulmonary vascular resistance. Particular attention should be given to the chest compression force to achieve satisfactory CO. Future clinical trials aimed at developing improved CPR protocols should explicitly consider interactions between chest compression and ventilation parameters.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Humans , Cardiopulmonary Resuscitation/methods , Hemodynamics , Respiration
11.
Brain Dev ; 45(7): 401-407, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36967317

ABSTRACT

BACKGROUND: Acute necrotizing encephalopathy (ANE) of childhood is a rare and devastating infection-associated acute encephalopathy. While there are no consensus treatments for ANE, recent case reports suggest a beneficial role for the use of tocilizumab, a recombinant humanized monoclonal antibody against the interleukin-6 (IL-6) receptor. The correlation of the timing of add-on tocilizumab in relation to long-term outcome has not been reported. METHODS: We report on the timing of administration of tocilizumab in two patients classified as high-risk using the ANE severity score (ANE-SS) with respect to the long-term outcome at 2 years. RESULTS: Case 1 was a 19-month-old previously well boy who presented to a tertiary children's hospital with seizures, evolving status dystonicus and shock. Case 2 was a three-year-old boy who presented to a peripheral hospital with fever, sepsis and encephalopathy. The patients were transferred to the tertiary intensive care unit and MRI confirmed ANE with extensive brainstem involvement. Case 1 received intravenous immunoglobulin (IVIg), methylprednisolone and tocilizumab at 21, 39 and 53 h respectively. His modified Rankin scale (mRS) at discharge and two years was unchanged at 5. The functional independence measure - for children (WeeFIM) at two years was very low (19/126). Case 2 received dexamethasone at 1 h, methylprednisolone at 21 h and IVIg and tocilizumab at 22 h. The mRS at discharge and two years was 4 and 3 respectively. The WeeFIM score at two years showed substantial improvement (96/126). CONCLUSION: The very early use of interleukin-6 blockade as 'add-on' immunotherapy in the first 24 h demonstrates potential for improving the long-term outcome in patients classified as high-risk using the ANE-SS.


Subject(s)
Brain Diseases , Interleukin-6 , Male , Child , Humans , Child, Preschool , Infant , Immunoglobulins, Intravenous/therapeutic use , Immunotherapy , Methylprednisolone , Receptors, Interleukin-6
12.
Lab Chip ; 22(19): 3770-3779, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36070434

ABSTRACT

Increases in complexity attainable in molecular self-assembly necessitates both advanced molecular design as well as microenvironmental control. Such control is offered by microfluidics, where precise chemical compositions and gradients can be readily established. A droplet microfluidic platform combining upstream step emulsification with downstream hydrodynamic microtraps has been designed to facilitate molecular self-assembly. The step emulsification rapidly generates uniform droplets which act as reaction chambers. The hydrodynamic microtraps hold droplets against the flow ensuring they are exposed to a continuous supply of fresh fluid for constant reagent extraction and/or delivery. Additionally, the droplet immobilization permits real-time droplet characterization and reaction monitoring. Subsequently, droplets can be released from the traps through flow reversal, allowing post-process characterization. The microfluidic system was demonstrated by the phase separation of lyotropic droplets. Ethanol/water droplets were created in a continuous ambient squalene/monoolein microflow, causing the continuous extraction of ethanol from the droplets and delivery of monoolein from the ambient microflow. Unlike conventional bulk techniques and continuous microfluidics, where finite microchannel lengths necessarily impose limits to the extent to which slow processes can proceed, this approach allows extended duration reactions whilst enabling real time process monitoring.


Subject(s)
Microfluidics , Squalene , Ethanol , Microfluidics/methods , Water/chemistry
13.
Metabolites ; 12(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36005633

ABSTRACT

Glycogen is a readily deployed intracellular energy storage macromolecule composed of branched chains of glucose anchored to the protein glycogenin. Although glycogen primarily occurs in the liver and muscle, it is found in most tissues, and its metabolism has been shown to be important in cancers and immune cells. Robust analysis of glycogen turnover requires stable isotope tracing plus a reliable means of quantifying total and labeled glycogen derived from precursors such as 13C6-glucose. Current methods for analyzing glycogen are time- and sample-consuming, at best semi-quantitative, and unable to measure stable isotope enrichment. Here we describe a microscale method for quantifying both intact and acid-hydrolyzed glycogen by ultra-high-resolution Fourier transform mass spectrometric (UHR-FTMS) and/or NMR analysis in stable isotope resolved metabolomics (SIRM) studies. Polar metabolites, including intact glycogen and their 13C positional isotopomer distributions, are first measured in crude biological extracts by high resolution NMR, followed by rapid and efficient acid hydrolysis to glucose under N2 in a focused beam microwave reactor, with subsequent analysis by UHR-FTMS and/or NMR. We optimized the microwave digestion time, temperature, and oxygen purging in terms of recovery versus degradation and found 10 min at 110−115 °C to give >90% recovery. The method was applied to track the fate of 13C6-glucose in primary human lung BEAS-2B cells, human macrophages, murine liver and patient-derived tumor xenograft (PDTX) in vivo, and the fate of 2H7-glucose in ex vivo lung organotypic tissue cultures of a lung cancer patient. We measured the incorporation of 13C6-glucose into glycogen and its metabolic intermediates, UDP-Glucose and glucose-1-phosphate, to demonstrate the utility of the method in tracing glycogen turnover in cells and tissues. The method offers a quantitative, sensitive, and convenient means to analyze glycogen turnover in mg amounts of complex biological materials.

14.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742953

ABSTRACT

Altered lipid metabolism is a potential target for therapeutic intervention in cancer. Overexpression of Fatty Acid Synthase (FASN) correlates with poor prognosis in colorectal cancer (CRC). While multiple studies show that upregulation of lipogenesis is critically important for CRC progression, the contribution of FASN to CRC initiation is poorly understood. We utilize a C57BL/6-Apc/Villin-Cre mouse model with knockout of FASN in intestinal epithelial cells to show that the heterozygous deletion of FASN increases mouse survival and decreases the number of intestinal adenomas. Using RNA-Seq and gene set enrichment analysis, we demonstrate that a decrease in FASN expression is associated with inhibition of pathways involved in cellular proliferation, energy production, and CRC progression. Metabolic and reverse phase protein array analyses demonstrate consistent changes in alteration of metabolic pathways involved in both anabolism and energy production. Downregulation of FASN expression reduces the levels of metabolites within glycolysis and tricarboxylic acid cycle with the most significant reduction in the level of citrate, a master metabolite, which enhances ATP production and fuels anabolic pathways. In summary, we demonstrate the critical importance of FASN during CRC initiation. These findings suggest that targeting FASN is a potential therapeutic approach for early stages of CRC or as a preventive strategy for this disease.


Subject(s)
Adenoma , Colorectal Neoplasms , Adenoma/genetics , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Disease Models, Animal , Down-Regulation/genetics , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Mice , Mice, Inbred C57BL , Transcriptome
15.
Microb Cell Fact ; 21(1): 66, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449016

ABSTRACT

BACKGROUND: Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS: In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS: Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.


Subject(s)
Escherichia coli , Glycoconjugates , Bacterial Vaccines/genetics , Escherichia coli/metabolism , Glycoconjugates/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Racemases and Epimerases/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Vaccines, Conjugate
16.
Br J Anaesth ; 128(6): 1052-1058, 2022 06.
Article in English | MEDLINE | ID: mdl-35410790

ABSTRACT

BACKGROUND: Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). METHODS: Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. RESULTS: HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. CONCLUSIONS: The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.


Subject(s)
COVID-19 , Lung Injury , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Computer Simulation , Humans , Oxygen , Respiratory Insufficiency/therapy
17.
Respir Res ; 23(1): 101, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35473715

ABSTRACT

BACKGROUND: Airway pressure release ventilation (APRV) is widely available on mechanical ventilators and has been proposed as an early intervention to prevent lung injury or as a rescue therapy in the management of refractory hypoxemia. Driving pressure ([Formula: see text]) has been identified in numerous studies as a key indicator of ventilator-induced-lung-injury that needs to be carefully controlled. [Formula: see text] delivered by the ventilator in APRV is not directly measurable in dynamic conditions, and there is no "gold standard" method for its estimation. METHODS: We used a computational simulator matched to data from 90 patients with acute respiratory distress syndrome (ARDS) to evaluate the accuracy of three "at-the-bedside" methods for estimating ventilator [Formula: see text] during APRV. RESULTS: Levels of [Formula: see text] delivered by the ventilator in APRV were generally within safe limits, but in some cases exceeded levels specified by protective ventilation strategies. A formula based on estimating the intrinsic positive end expiratory pressure present at the end of the APRV release provided the most accurate estimates of [Formula: see text]. A second formula based on assuming that expiratory flow, volume and pressure decay mono-exponentially, and a third method that requires temporarily switching to volume-controlled ventilation, also provided accurate estimates of true [Formula: see text]. CONCLUSIONS: Levels of [Formula: see text] delivered by the ventilator during APRV can potentially exceed levels specified by standard protective ventilation strategies, highlighting the need for careful monitoring. Our results show that [Formula: see text] delivered by the ventilator during APRV can be accurately estimated at the bedside using simple formulae that are based on readily available measurements.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Computer Simulation , Continuous Positive Airway Pressure/methods , Humans , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Ventilator-Induced Lung Injury/prevention & control , Ventilators, Mechanical
18.
Free Radic Biol Med ; 179: 181-189, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34968705

ABSTRACT

Mitochondria are central to the metabolic circuitry that generates superoxide radicals/anions (O2•-) as a by-product of oxygen metabolism. By regulating superoxide levels, manganese superoxide dismutase plays important roles in numerous biochemical and molecular events essential for the survival of aerobic life. In this study, we used MitoParaquat (mPQ) to generate mitochondria-specific O2•- and stable isotope-resolved metabolomics tracing in primary human epidermal keratinocytes to investigate how O2•- generated in mitochondria regulates gene expression. The results reveal that isocitrate is blocked from conversion to α-ketoglutarate and that acetyl-coenzyme A (CoA) accumulates, which is consistent with a reduction in oxygen consumption rate and inactivation of isocitrate dehydrogenase (IDH) activity. Since acetyl-CoA is linked to histone acetylation and gene regulation, we determined the effect of mPQ on histone acetylation. The results demonstrate an increase in histone H3 acetylation at lysines 9 and 14. Suppression of IDH increased histone acetylation, providing a direct link between metabolism and epigenetic alterations. The activity of histone acetyltransferase p300 increased after mPQ treatment, which is consistent with histone acetylation. Importantly, mPQ selectively increased the nuclear levels and activity of the oxidative stress-sensitive nuclear factor erythroid 2-related factor 2. Together, the results establish a new paradigm that recognizes O2•- as an initiator of metabolic reprogramming that activates epigenetic regulation of gene transcription in response to mitochondrial dysfunction.


Subject(s)
Histones , Superoxides , Acetylation , Energy Metabolism/genetics , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Humans , Mitochondria/genetics , Mitochondria/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Superoxides/metabolism
19.
Br J Anaesth ; 128(2): e151-e157, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34863511

ABSTRACT

BACKGROUND: In non-traumatic respiratory failure, pre-hospital application of CPAP reduces the need for intubation. Primary blast lung injury (PBLI) accompanied by haemorrhagic shock is common after mass casualty incidents. We hypothesised that pre-hospital CPAP is also beneficial after PBLI accompanied by haemorrhagic shock. METHODS: We performed a computer-based simulation of the cardiopulmonary response to PBLI followed by haemorrhage, calibrated from published controlled porcine experiments exploring blast injury and haemorrhagic shock. The effect of different CPAP levels was simulated in three in silico patients who had sustained mild, moderate, or severe PBLI (10%, 25%, 50% contusion of the total lung) plus haemorrhagic shock. The primary outcome was arterial partial pressure of oxygen (Pao2) at the end of each simulation. RESULTS: In mild blast lung injury, 5 cm H2O ambient-air CPAP increased Pao2 from 10.6 to 12.6 kPa. Higher CPAP did not further improve Pao2. In moderate blast lung injury, 10 cm H2O CPAP produced a larger increase in Pao2 (from 8.5 to 11.1 kPa), but 15 cm H2O CPAP produced no further benefit. In severe blast lung injury, 5 cm H2O CPAP inceased Pao2 from 4.06 to 8.39 kPa. Further increasing CPAP to 10-15 cm H2O reduced Pao2 (7.99 and 7.90 kPa, respectively) as a result of haemodynamic impairment resulting from increased intrathoracic pressures. CONCLUSIONS: Our modelling study suggests that ambient air 5 cm H2O CPAP may benefit casualties suffering from blast lung injury, even with severe haemorrhagic shock. However, higher CPAP levels beyond 10 cm H2O after severe lung injury reduced oxygen delivery as a result of haemodynamic impairment.


Subject(s)
Blast Injuries/therapy , Continuous Positive Airway Pressure/methods , Lung Injury/therapy , Shock/therapy , Animals , Blast Injuries/etiology , Computer Simulation , Emergency Medical Services/methods , Humans , Lung Injury/etiology , Male , Mass Casualty Incidents , Oxygen/metabolism , Partial Pressure , Pulmonary Gas Exchange , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Severity of Illness Index , Shock/etiology , Swine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...