Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1490-1499, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28844744

ABSTRACT

Daptomycin, sold under the trade name CUBICIN, is the first lipopeptide antibiotic to be approved for use against Gram-positive organisms, including a number of highly resistant species. Over the last few decades, a number of studies have tried to pinpoint the mechanism of action of daptomycin. These proposed modes of action often have points in common (e.g. the requirement for Ca2+ and lipid membranes containing a high proportion of phosphatidylglycerol (PG) headgroups), but also points of divergence (e.g. oligomerization in solution and in membranes, membrane perturbation vs. inhibition of cell envelope synthesis). In this study, we investigate how concentration effects may have an impact on the interpretation of the biophysical data used to support a given mechanism of action. Results obtained from small angle neutron scattering (SANS) experiments and molecular dynamics (MD) simulations show that daptomycin oligomerizes at high concentrations (both with and without Ca2+) in solution, but that this oligomer readily falls apart. Photon correlation spectroscopy (PCS) experiments demonstrate that daptomycin causes fusion more readily in DMPC/PG membranes than in POPC/PG, suggesting that the latter may be a better model system. Finally, fluorescence and Förster resonance energy transfer (FRET) experiments reveal that daptomycin binds strongly to the lipid membrane and that oligomerization occurs in a concentration-dependent manner. The combined experiments provide an improved framework for more general and rigorous biophysical studies toward understanding the elusive mechanism of action of daptomycin. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Subject(s)
Calcium/chemistry , Daptomycin/chemistry , Membrane Lipids/chemistry , Neutron Diffraction , Scattering, Small Angle
2.
Sci Rep ; 7: 39776, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051106

ABSTRACT

U24 is a protein found in both roseoloviruses Human Herpes Virus type 6 and 7 (HHV-6 and HHV-7), with an N-terminus that is rich in prolines (PY motif in both HHV-6A and 7; PxxP motif in HHV-6A). Previous work has shown that the interaction between U24 and WW domains is important for endocytic recycling of T-cell receptors, but a cognate ligand was never identified. In this contribution, data was obtained from pull-downs, ITC, NMR and molecular dynamics simulations to show that a specific interaction exists between U24 and Nedd4 WW domains. ITC experiments were also carried out for U24 from HHV-6A phosphorylated at Thr6 (pU24-6A) and a peptide containing the PY motif from Nogo-A, a protein implicated in both the initial inflammatory and the neurodegenerative phases of multiple sclerosis (MS). The results suggest that phosphorylation of U24 from HHV-6A may be crucial for its potential role in MS.


Subject(s)
Herpesvirus 6, Human/physiology , Multiple Sclerosis/virology , Nogo Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Viral Proteins/metabolism , Amino Acid Motifs/genetics , Endocytosis , Humans , Molecular Dynamics Simulation , Molecular Mimicry , Multiple Sclerosis/metabolism , Nogo Proteins/genetics , Phosphorylation , Proline/genetics , Protein Interaction Domains and Motifs/genetics , Viral Proteins/genetics , WW Domains/genetics
3.
Proteins ; 83(5): 820-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25663079

ABSTRACT

How to compare the structures of an ensemble of protein conformations is a fundamental problem in structural biology. As has been previously observed, the widely used RMSD measure due to Kabsch, in which a rigid-body superposition minimizing the least-squares positional deviations is performed, has its drawbacks when comparing and visualizing a set of flexible protein structures. Here, we develop a method, fleximatch, of protein structure comparison that takes flexibility into account. Based on a distance matrix measure of flexibility, a weighted superposition of distance matrices rather than of atomic coordinates is performed. Subsequently, this allows a consistent determination of (a) a superposition of structures for visualization, (b) a partitioning of the protein structure into rigid molecular components (core atoms), and (c) an atomic mobility measure. The method is suitable for highlighting both particularly flexible and rigid parts of a protein from structures derived from NMR, X-ray diffraction or molecular simulation.


Subject(s)
Molecular Dynamics Simulation , Software , Protein Conformation , Proteins/chemistry , Solutions
4.
Biochemistry ; 53(38): 6092-102, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25225878

ABSTRACT

The putative membrane protein U24 from HHV-6A shares a seven-residue sequence identity (which includes a PxxP motif) with myelin basic protein (MBP), a protein responsible for the compaction of the myelin sheath in the central nervous system. U24 from HHV-6A also shares a PPxY motif with U24 from the related virus HHV-7, allowing them both to block early endosomal recycling. Recently, MBP has been shown to have protein-protein interactions with a range of proteins, including proteins containing SH3 domains. Given that this interaction is mediated by the proline-rich segment in MBP, and that similar proline-rich segments are found in U24, we investigate here whether U24 also interacts with SH3 domain-containing proteins and what the nature of that interaction might be. The implications of a U24-Fyn tyrosine kinase SH3 domain interaction are discussed in terms of the hypothesis that U24 may function like MBP through molecular mimicry, potentially contributing to the disease state of multiple sclerosis or other demyelinating disorders.


Subject(s)
Herpesvirus 6, Human/metabolism , Herpesvirus 7, Human/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Amino Acid Sequence , Circular Dichroism , Gene Deletion , Gene Expression Regulation, Viral , Herpesvirus 6, Human/genetics , Herpesvirus 7, Human/genetics , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-fyn/chemistry
5.
J Chem Theory Comput ; 8(7): 2391-2403, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-23180979

ABSTRACT

Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent-solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom-specific solvation parameter σ(i) (SASA). A procedure for the determination of values for the σ(i) (SASA) parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σ(i) (SASA) parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σ(g) (SASA) was obtained via partitioning of the atom-type σ(i) (SASA) distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces.

6.
Chem Biol ; 17(9): 970-80, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20851346

ABSTRACT

The structure and function of the synthetic innate defense regulator peptide 1018 was investigated. This 12 residue synthetic peptide derived by substantial modification of the bovine cathelicidin bactenecin has enhanced innate immune regulatory and moderate direct antibacterial activities. The solution state NMR structure of 1018 in zwitterionic dodecyl phosphocholine (DPC) micelles indicated an α-helical conformation, while secondary structures, based on circular dichroism measurements, in anionic sodium dodecyl sulfate (SDS) and phospholipid vesicles (POPC/PG in a 1:1 molar ratio) and simulations revealed that 1018 can adopt a variety of folds, tailored to its different functions. The structural data are discussed in light of the ability of 1018 to potently induce chemokine responses, suppress the LPS-induced TNF-α response, and directly kill both Gram-positive and Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Immunologic Factors/chemistry , Peptides/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cattle , Circular Dichroism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Immunity, Innate/drug effects , Immunologic Factors/pharmacology , Micelles , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Protein Structure, Secondary , Quantitative Structure-Activity Relationship , Sodium Dodecyl Sulfate/chemistry , Tumor Necrosis Factor-alpha/metabolism
7.
Biochemistry ; 49(2): 287-96, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-20000438

ABSTRACT

The fusion peptide of TBEV is a short segment of the envelope protein that mediates viral and host cell membrane fusion at acidic pH. Previous studies on the E protein have shown that mutations at L107 have an effect on fusogenic activity. Structural studies have also suggested that during the fusion process the E protein rearranges to form a trimer. In the present study, a number of short peptides were synthesized, and their structure/activity was examined: (1) monomers consisting of residues 93-113 of the wild-type E protein with Leu at position 107 (WT) and two mutants, namely, L107F and L107T; (2) a monomer consisting of residues 93-113 of the E protein with a C105A mutation (TFPmn); (3) a trimer consisting of three monomers described in (2), linked at the C-terminus via 1 Lys (TFPtr); (4) a monomer consisting of residues 93-113 of the E protein plus six additional Lys at the C-terminus; and (5) a trimer consisting of three monomers described in (3), linked via the side chain of the sixth lysine. The secondary structure content of all peptides was investigated using circular dichroism (CD). Approximately seven of the residues were in beta-strand conformation, in the presence of POPC/POPE/cholesterol. The structures did not depend on pH significantly. The fusogenicity of the peptides was measured by FRET and photon correlation spectroscopy. The data suggest that TFPtr is the most fusogenic at acidic pH and that the mutation from L107 to T reduces activity. Molecular dynamics simulations of WT, L107T, and L107F suggest that this reduction in activity may be related to the fact that the mutations disrupt trimer stability. Finally, tryptophan fluorescence experiments were used to localize the peptides in the membrane. It was found that WT, L107F, TFPmn, and TFPtr could penetrate better into the acyl chain region of the lipids than the other peptides tested. The implications of these results on the fusion mechanism of TBEV E protein will be presented.


Subject(s)
Encephalitis Viruses, Tick-Borne/chemistry , Models, Molecular , Peptide Fragments/chemistry , Peptides/chemistry , Viral Proteins/chemistry , Virus Internalization , Amino Acid Sequence , Computer Simulation , Kinetics , Membrane Fusion Proteins/chemistry , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Sequence Homology, Amino Acid , Tryptophan/analysis
8.
Eur Biophys J ; 37(4): 421-33, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17968536

ABSTRACT

Daptomycin, a cyclic anionic lipopeptide antibiotic, whose three-dimensional structure was recently solved using solution state NMR (Ball et al. 2004; Jung et al. 2004; Rotondi and Gierasch 2005), requires calcium for function. To date, the exact nature of the interaction between divalent cations, such as Ca(2+) or Mg(2+), has not been fully characterized. It has, however, been suggested that addition of Ca(2+) to daptomycin in a 1:1 molar ratio induces aggregation. Moreover, it has been suggested that certain residues, e.g. Asp3 and Asp7, which are essential for activity (Grunewald et al. 2004; Kopp et al. 2006), may also be important for Ca(2+) binding (Jung et al. 2004). In this work, we have tried: (1) to further pinpoint how Ca(2+) affects daptomycin structure/oligomerization using analytical ultracentrifugation; and (2) to determine whether a specific calcium binding site exists, based on one-dimensional (13)C NMR spectra and molecular dynamics (MD) simulations. The centrifugation results indicated that daptomycin formed micelles of between 14 and 16 monomers in the presence of a 1:1 molar ratio of Ca(2+) and daptomycin. The (13)C NMR data indicated that addition of calcium had a significant effect on the Trp1 and Kyn13 residues, indicating that either calcium binds in this region or that these residues may be important for oligomerization. Finally, the molecular dynamics simulation results indicated that the conformational change of daptomycin upon calcium binding might not be as significant as originally proposed. Similar studies on the divalent cation Mg(2+) are also presented. The implication of these results for the biological function of daptomycin is discussed.


Subject(s)
Anti-Infective Agents/chemistry , Cations, Divalent , Daptomycin/chemistry , Algorithms , Anti-Infective Agents/analysis , Binding Sites , Calcium/chemistry , Computer Simulation , Daptomycin/analysis , Magnesium/chemistry , Magnetic Resonance Spectroscopy , Micelles , Models, Statistical , Molecular Conformation , Peptides/chemistry , Protein Conformation , Ultracentrifugation
9.
Biochim Biophys Acta ; 1768(12): 3116-26, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17945184

ABSTRACT

Daptomycin is a cyclic anionic lipopeptide that exerts its rapid bactericidal effect by perturbing the bacterial cell membrane, a mode of action different from most other currently commercially available antibiotics (except e.g. polymyxin and gramicidin). Recent work has shown that daptomycin requires calcium in the form of Ca2+ to form a micellar structure in solution and to bind to bacterial model membranes. This evidence sheds light on the initial steps in the mechanism of action of this novel antibiotic. To understand how daptomycin goes on to perturb bacterial membranes, its three-dimensional structure has been determined in the presence of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles. NMR spectra of daptomycin in DHPC were obtained under two conditions, namely in the presence of Ca2+ as used by Jung et al. [D. Jung, A. Rozek, M. Okon, R.E.W. Hancock, Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol. 11 (2004) 949-57] to solve the calcium-conjugated structure of daptomycin in solution and in a phosphate buffer as used by Rotondi and Gierasch [K.S. Rotondi, L.M. Gierasch, A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers 80 (2005) 374-85] to solve the structure of apo-daptomycin. The structures were calculated using molecular dynamics time-averaged refinement. The different sample conditions used to obtain the NMR spectra are discussed in light of fluorescence data, lipid flip-flop and calcein release assays in PC liposomes, in the presence and absence of Ca2+ [D. Jung, A. Rozek, M. Okon, R.E.W. Hancock, Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol. 11 (2004) 949-57]. The implications of these results for the membrane perturbation mechanism of daptomycin are discussed.


Subject(s)
Anti-Bacterial Agents/chemistry , Daptomycin/chemistry , Magnetic Resonance Spectroscopy/methods , Micelles , Phospholipid Ethers/chemistry , Models, Molecular
10.
Chemistry ; 13(13): 3596-605, 2007.
Article in English | MEDLINE | ID: mdl-17295367

ABSTRACT

We have designed, synthesised and characterised a series of template-assembled de novo four-helix bundles, each differing in the linker length between the template and the peptides. The helix is based on an earlier peptide sequence: EELLKKLEELLKKLG (first-generation sequence), which was designed to link the hydrophilic/hydrophobic interface of the helices. Increasing or decreasing the linker length by one glycine residue had a significant effect on the structure and properties of the template-assembled synthetic proteins (TASPs). Here, the effect of the linker length is further probed by linking the peptides closer to the hydrophobic face by using the second-generation sequence, AEELLKKLEELLKKG, in an effort to improve the packing between the helices and to better understand the helical bundles. The peptides were synthesised with 0-4 Gly linker residues and linked onto a cavitand template. The proteins were found to be alpha-helical, stable to guanidine hydrochloride (GuHCl) and to unfold cooperatively. However, their stabilities toward GuHCl, propensity to self-aggregate and structural specificity differed. The two-glycine variant of the second-generation series demonstrated the highest stability and most native-like character of all the mononeric TASPs in both the first- and second-generation series. The structural specificity of this two glycine variant is comparable to that of other known native-like de novo proteins. Molecular dynamics simulations showed that the two-glycine variant contains helices that are tilted with respect to the cavitand template and may account for its unique properties.


Subject(s)
Ethers, Cyclic , Models, Biological , Proteins/chemical synthesis , Resorcinols , Amino Acid Sequence , Circular Dichroism , Computer Simulation , Ethers, Cyclic/chemistry , Guanidine/chemistry , Guanidine/pharmacology , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Proteins/chemistry , Resorcinols/chemistry , Structure-Activity Relationship
11.
Proteins ; 64(3): 719-29, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16783791

ABSTRACT

We have investigated the structure and dynamics of three cavitand-based four-helix bundles (caviteins) by computer simulation. In these systems, designed de novo, each of the four helices contain the identical basis sequence EELLKKLEELLKKG (N1). Each cavitein consists of a rigid macrocycle (cavitand) with four aryl linkages, to each of which is connected an N1 peptide by means of a linker peptide. The three caviteins studied here differ only in the linker peptide, which consist of one, two, or three glycine residues. Previous experimental work has shown that these systems exhibit very different behavior in terms of stability and oligomerization states despite the small differences in the linker peptide. Given that to date no three-dimensional structure is available for these caviteins, we have undertaken a series of molecular dynamics (MD) simulations in explicit water to try to rationalize the large differences in the experimentally observed behavior of these systems. Our results provide insight, for the first time, into why and how the cavitein with a single glycine linker forms dimers. In addition, our results indicate why although the two- and three-glycine-linked caviteins have similar stabilities, they have different native-like characteristics: the cavitein with three glycines can form a supercoiled helix, whereas the one with two glycines cannot. These findings may provide a useful guide in the rational de novo design of novel proteins with finely tunable structures and functions in the future.


Subject(s)
Computer Simulation , Peptides/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Hydrogen Bonding , Models, Molecular , Protein Structure, Secondary , Thermodynamics
12.
J Biomol NMR ; 32(2): 101-11, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16034662

ABSTRACT

The effect of mobility on 15N chemical shift/15N-(1)H dipolar coupling (PISEMA) solid state NMR experiments applied to macroscopically oriented beta-barrels is assessed using molecular dynamics simulation data of the NalP autotransporter domain embedded in a DMPC bilayer. In agreement with previous findings for alpha-helices, the fast librational motion of the peptide planes is found to have a considerable effect on the calculated PISEMA spectra. In addition, the dependence of the chemical shift anisotropy (CSA) and dipolar coupling parameters on the calculated spectra is evaluated specifically for the beta-barrel case. It is found that the precise choice of the value of the CSA parameters sigma11, sigma22 and sigma33 has only a minor effect, whereas the choice of the CSA parameter theta shifts the position of the peaks by up to 20 ppm and changes the overall shape of the spectrum significantly. As was found for alpha-helices, the choice of the NH bond distance has a large effect on the dipolar coupling constant used for the calculations. Overall, it is found that the alternating beta-strands in the barrel occupy distinct regions of the PISEMA spectra, forming patterns which may prove useful in peak assignment.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Protein Conformation , Hydrogen , Models, Molecular , Nitrogen , Protein Structure, Secondary
13.
J Biomol NMR ; 26(4): 283-95, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12815256

ABSTRACT

The effect of time and spatial averaging on (15)N chemical shift/(1)H-(15)N dipolar correlation spectra, i.e., PISEMA spectra, of alpha-helical membrane peptides and proteins is investigated. Three types of motion are considered: (a) Librational motion of the peptide planes in the alpha-helix; (b) rotation of the helix about its long axis; and (c) wobble of the helix about a nominal tilt angle. A 2ns molecular dynamics simulation of helix D of bacteriorhodopsin is used to determine the effect of librational motion on the spectral parameters. For the time averaging, the rotation and wobble of this same helix are modelled by assuming either Gaussian motion about the respective angles or a uniform distribution of a given width. For the spatial averaging, regions of possible (15)N chemical shift/(1)H-(15)N dipolar splittings are computed for a distribution of rotations and/or tilt angles of the helix. The computed spectra show that under certain motional modes the (15)N chemical shift/(1)H-(15)N dipolar pairs for each of the residues do not form patterns which mimic helical wheel patterns. As a result, the unambiguous identification of helix tilt and helix rotation without any resonance assignments or on the basis of a single assignment may be difficult.


Subject(s)
Bacteriorhodopsins/chemistry , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Algorithms , Hydrogen , Models, Chemical , Motion , Nitrogen Isotopes , Protein Structure, Secondary , Rotation
14.
Proteins ; 51(3): 409-22, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12696052

ABSTRACT

The dynamics of HIV-1 protease, both in unliganded and substrate-bound forms have been analyzed by using an analytical method, Gaussian network model (GNM). The method is applied to different conformations accessible to the protein backbone in the native state, observed in crystal structures and snapshots from fully atomistic molecular dynamics (MD) simulation trajectories. The modes of motion obtained from GNM on different conformations of HIV-1 protease are conserved throughout the MD simulations. The flaps and 40's loop of the unliganded HIV-1 protease structure are identified as the most mobile regions. However, in the liganded structure these flaps lose mobility, and terminal regions of the monomers become more flexible. Analysis of the fast modes shows that residues important for stability are in the same regions of all the structures examined. Among these, Gly86 appears to be a key residue for stability. The contribution of residues in the active site region and flaps to the stability is more pronounced in the substrate-bound form than in the unliganded form. The convergence of modes in GNM to similar regions of HIV-1 protease, regardless of the conformation of the protein, supports the robustness of GNM as a potentially useful and predictive tool.


Subject(s)
HIV Protease/chemistry , Models, Molecular , Binding Sites , Computer Simulation , Crystallography, X-Ray , HIV Protease/metabolism , Ligands , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...