Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ecol ; 21(16): 3960-73, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22726223

ABSTRACT

The identification and characterization of reproductively isolated subpopulations or 'stocks' are essential for effective conservation and management decisions. This can be difficult in vagile marine species like marine mammals. We used paternity assignment and 'gametic recapture' to examine the reproductive autonomy of southern right whales (Eubalaena australis) on their New Zealand (NZ) calving grounds. We derived DNA profiles for 34 mother-calf pairs from skin biopsy samples, using sex-specific markers, 13 microsatellite loci and mtDNA haplotypes. We constructed DNA profiles for 314 adult males, representing 30% of the census male abundance of the NZ stock, previously estimated from genotypic mark-recapture modelling to be 1085 (95% CL 855, 1416). Under the hypothesis of demographic closure and the assumption of equal reproductive success among males, we predict: (i) the proportion of paternities assigned will reflect the proportion of the male population sampled and (ii) the gametic mark-recapture (GMR) estimate of male abundance will be equivalent to the census male estimate for the NZ stock. Consistent with these predictions, we found that the proportion of assigned paternities equalled the proportion of the census male population size sampled. Using the sample of males as the initial capture, and paternity assignment as the recapture, the GMR estimate of male abundance was 1001 (95% CL 542, 1469), similar to the male census estimate. These findings suggest that right whales returning to the NZ calving ground are reproductively autonomous on a generational timescale, as well as isolated by maternal fidelity on an evolutionary timescale, from others in the Indo-Pacific region.


Subject(s)
Paternity , Population Density , Whales/genetics , Animals , DNA Fingerprinting/methods , DNA, Mitochondrial , Female , Haplotypes , Male , Microsatellite Repeats , Models, Theoretical , New Zealand
2.
Mol Ecol ; 19(2): 281-91, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20025655

ABSTRACT

Severe declines in megafauna worldwide illuminate the role of top predators in ecosystem structure. In the Antarctic, the Krill Surplus Hypothesis posits that the killing of more than 2 million large whales led to competitive release for smaller krill-eating species like the Antarctic minke whale. If true, the current size of the Antarctic minke whale population may be unusually high as an indirect result of whaling. Here, we estimate the long-term population size of the Antarctic minke whale prior to whaling by sequencing 11 nuclear genetic markers from 52 modern samples purchased in Japanese meat markets. We use coalescent simulations to explore the potential influence of population substructure and find that even though our samples are drawn from a limited geographic area, our estimate reflects ocean-wide genetic diversity. Using Bayesian estimates of the mutation rate and coalescent-based analyses of genetic diversity across loci, we calculate the long-term population size of the Antarctic minke whale to be 670,000 individuals (95% confidence interval: 374,000-1,150,000). Our estimate of long-term abundance is similar to, or greater than, contemporary abundance estimates, suggesting that managing Antarctic ecosystems under the assumption that Antarctic minke whales are unusually abundant is not warranted.


Subject(s)
Genetics, Population , Minke Whale/genetics , Models, Genetic , Animals , Bayes Theorem , Computer Simulation , Conservation of Natural Resources , Genetic Linkage , Genetic Markers , Genetic Variation , Geography , Monte Carlo Method , Mutation , Population Density , Recombination, Genetic , Sequence Analysis, DNA
3.
Mol Ecol Resour ; 10(4): 684-92, 2010 Jul.
Article in English | MEDLINE | ID: mdl-21565073

ABSTRACT

The utility of microsatellite markers for inferring population size and trend has not been rigorously examined, even though these markers are commonly used to monitor the demography of natural populations. We assessed the ability of a linkage disequilibrium estimator of effective population size (N(e) ) and a simple capture-recapture estimator of abundance (N) to quantify the size and trend of stable or declining populations (true N = 100-10,000), using simulated Wright-Fisher populations. Neither method accurately or precisely estimated abundance at sample sizes of S = 30 individuals, regardless of true N. However, if larger samples of S = 60 or 120 individuals were collected, these methods provided useful insights into abundance and trends for populations of N = 100-500. At small population sizes (N = 100 or 250), precision of the N(e) estimates was improved slightly more by a doubling of loci sampled than by a doubling of individuals sampled. In general, monitoring N(e) proved a more robust means of identifying stable and declining populations than monitoring N over most of the parameter space we explored, and performance of the N(e) estimator is further enhanced if the N(e) /N ratio is low. However, at the largest population size (N = 10,000), N estimation outperformed N(e) . Both methods generally required ≥ 5 generations to pass between sampling events to correctly identify population trend.

4.
J Hered ; 97(3): 226-34, 2006.
Article in English | MEDLINE | ID: mdl-16489145

ABSTRACT

Humpback whales on their feeding grounds in the Gulf of Maine typically form fluid fission/fusion groups of two to three individuals characterized by noncompetitive and, at times, cooperative behavior. Here we test the hypothesis that, despite the apparent absence of close kinship bonds, the fluid associations between feeding whales are influenced by "maternal lineages" as represented by mtDNA haplotypes. Using skin samples collected with a biopsy dart, variation in the hypervariable segment of the mtDNA control region identified 17 unique haplotypes among 159 individually identified whales from the southern Gulf of Maine. The haplotypes of a further 143 individuals were inferred from known direct maternal (cow-calf) relationships. The frequencies of associations among these 302 individuals were calculated from 21,617 sighting records collected from 1980 to 1995, excluding associations between a cow and her dependent calf. For groups of two where the haplotypes of both individuals were known (n = 3,151), individuals with the same haplotype were together significantly more often (26%) than expected by random association (20%). To account for different group sizes and associations with individuals of unknown haplotype and sex, we used Monte Carlo simulations to test for nonrandom associations in the full data set, as well as known female-only (n = 1,512), male-only (n = 730), and mixed-sex (n = 2,745) groups. Within-haplotype associations were significantly more frequent than expected at random for all groups (P = .002) and female-only groups (P = .011) but not male-only groups, while mixed-sex groups approached significance (P = .062). A Mantel test of individual pairwise association indices and haplotype identity confirmed that within-haplotype associations were more frequent than expected for all sex combinations except male-male associations, with females forming within-haplotype associations 1.7 times more often than expected by random assortment. Partial matrix correlations and permutation analyses indicated that the skew toward within-haplotype associations could not be accounted for by short-term temporal co-occurrence or fine-scale spatial distributions of individuals with shared haplotypes. While the mechanism by which individuals with a common mtDNA haplotype assort remains unknown, our results strongly suggest an influence of maternal lineages on the social organization of humpback whales within a regional feeding ground.


Subject(s)
Genomic Imprinting , Whales/genetics , Whales/physiology , Animals
5.
Trends Ecol Evol ; 19(7): 365-71, 2004 Jul.
Article in English | MEDLINE | ID: mdl-16701287

ABSTRACT

Historical reconstruction of the population dynamics of whales before, during and after exploitation is crucial to marine ecological restoration and for the consideration of future commercial whaling. Population dynamic models used by the International Whaling Commission require historical catch records, estimates of intrinsic rates of increase and current abundance, all of which are subject to considerable uncertainty. Population genetic parameters can be used for independent estimates of historical demography, but also have large uncertainty, particularly for rates of mutational substitution and gene flow. At present, demographic and genetic estimates of pre-exploitation abundance differ by an order of magnitude and, consequently, suggest vastly different baselines for judging recovery. Here, we review these two approaches and suggest the need for a synthetic analytical framework to evaluate uncertainty in key parameters. Such a framework could have broad application to modelling both historical and contemporary population dynamics in other exploited species.

SELECTION OF CITATIONS
SEARCH DETAIL