Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Environ Epidemiol ; 8(2): e296, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617427

ABSTRACT

Background: Pollen exposure is associated with substantial respiratory morbidity, but its potential impact on cardiovascular disease (CVD) remains less understood. This study aimed to investigate the associations between daily levels of 13 pollen types and emergency department (ED) visits for eight CVD outcomes over a 26-year period in Atlanta, GA. Methods: We acquired pollen data from Atlanta Allergy & Asthma, a nationally certified pollen counting station, and ED visit data from individual hospitals and the Georgia Hospital Association. We performed time-series analyses using quasi-Poisson distributed lag models, with primary analyses assessing 3-day (lag 0-2 days) pollen levels. Models controlled for temporally varying covariates, including air pollutants. Results: During 1993-2018, there were 1,573,968 CVD ED visits. Most pairwise models of the 13 pollen types and eight CVD outcomes showed no association, with a few exceptions potentially due to chance. Conclusion: We found limited evidence of the impact of pollen on cardiovascular morbidity in Atlanta. Further study on pollen exposures in different climactic zones and exploration of pollen-pollution mixture effects is warranted.

2.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38420618

ABSTRACT

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

3.
J Epidemiol Community Health ; 78(5): 296-302, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38302278

ABSTRACT

INTRODUCTION: Ambient particulate matter ≤ 2.5 µm in aerodynamic diameter (PM2.5) exposure elevates the risk for cardiovascular disease morbidity (CVDM). The aim of this study is to characterise which area-level measures of socioeconomic position (SEP) modify the relationship between PM2.5 exposure and CVDM in Missouri at the census-tract (CT) level. METHODS: We use individual level Missouri emergency department (ED) admissions data (n=3 284 956), modelled PM2.5 data, and yearly CT data from 2012 to 2016 to conduct a two-stage analysis. Stage one uses a case-crossover approach with conditional logistic regression to establish the baseline risk of ED visits associated with IQR changes in PM2.5. In the second stage, we use multivariate metaregression to examine how CT-level SEP modifies the relationship between ambient PM2.5 exposure and CVDM. RESULTS: We find that overall, ambient PM2.5 exposure is associated with increased risk for CVDM. We test effect modification in statewide and urban CTs, and in the warm season only. Effect modification results suggest that among SEP measures, poverty is most consistently associated with increased risk for CVDM. For example, across Missouri, the highest poverty CTs are at an elevated risk for CVDM (OR=1.010 (95% CI 1.007 to 1.014)) compared with the lowest poverty CTs (OR=1.004 (95% CI 1.000 to 1.008)). Other SEP modifiers generally display an inconsistent or null effect. CONCLUSION: Overall, we find some evidence that area-level SEP modifies the relationship between ambient PM2.5 exposure and CVDM, and suggest that the relationship between air-pollution, area-level SEP and CVDM may be sensitive to spatial scale.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Missouri/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Censuses , Emergency Room Visits , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Disease Progression , Poverty , Emergency Service, Hospital
4.
Environ Health Perspect ; 132(2): 21302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329751
5.
Nat Commun ; 15(1): 1796, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413648

ABSTRACT

Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%-0.4% at 1.5-3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.


Subject(s)
Climate Change , Global Warming , Temperature , Cold Temperature , Hot Temperature , Mortality
6.
Environ Health ; 23(1): 9, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254140

ABSTRACT

BACKGROUND: Short-term temperature variability, defined as the temperature range occurring within a short time span at a given location, appears to be increasing with climate change. Such variation in temperature may influence acute health outcomes, especially cardiovascular diseases (CVD). Most research on temperature variability has focused on the impact of within-day diurnal temperature range, but temperature variability over a period of a few days may also be health-relevant through its impact on thermoregulation and autonomic cardiac functioning. To address this research gap, this study utilized a database of emergency department (ED) visits for a variety of cardiovascular health outcomes over a 27-year period to investigate the influence of three-day temperature variability on CVD. METHODS: For the period of 1993-2019, we analyzed over 12 million CVD ED visits in Atlanta using a Poisson log-linear model with overdispersion. Temperature variability was defined as the standard deviation of the minimum and maximum temperatures during the current day and the previous two days. We controlled for mean temperature, dew point temperature, long-term time trends, federal holidays, and day of week. We stratified the analysis by age group, season, and decade. RESULTS: All cardiovascular outcomes assessed, except for hypertension, were positively associated with increasing temperature variability, with the strongest effects observed for stroke and peripheral vascular disease. In stratified analyses, adverse associations with temperature variability were consistently highest in the moderate-temperature season (October and March-May) and in the 65 + age group for all outcomes. CONCLUSIONS: Our results suggest that CVD morbidity is impacted by short-term temperature variability, and that patients aged 65 and older are at increased risk. These effects were more pronounced in the moderate-temperature season and are likely driven by the Spring season in Atlanta. Public health practitioners and patient care providers can use this knowledge to better prepare patients during seasons with high temperature variability or ahead of large shifts in temperature.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Aged , Temperature , Emergency Room Visits , Cardiovascular Diseases/epidemiology , Research Design
7.
Environ Sci Technol ; 58(1): 315-322, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153962

ABSTRACT

Exposure to heat is associated with a substantial burden of disease and is an emerging issue in the context of climate change. Heat is of particular concern in India, which is one of the world's hottest countries and also most populous, where relatively little is known about personal heat exposure, particularly in rural areas. Here, we leverage data collected as part of a randomized controlled trial to describe personal temperature exposures of adult women (40-79 years of age) in rural Tamil Nadu. We also characterize measurement error in heat exposure assessment by comparing personal exposure measurements to the nearest ambient monitoring stations and to commonly used modeled temperature data products. We find that temperatures differ across individuals in the same area on the same day, sometimes by more than 5 °C within the same hour, and that some individuals experience sharp increases in heat exposure in the early morning or evening, potentially a result of cooking with solid fuels. We find somewhat stronger correlations between the personal exposure measurements and the modeled products than with ambient monitors. We did not find evidence of systematic biases, which indicates that adjusting for discrepancies between different exposure measurement methods is not straightforward.


Subject(s)
Hot Temperature , Rural Population , Adult , Female , Humans , Cooking , India , Temperature
8.
Int J Biometeorol ; 68(2): 381-392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157021

ABSTRACT

Exposure to heatwaves may result in adverse human health impacts. Heat alerts in South Africa are currently based on defined temperature-fixed threshold values for large towns and cities. However, heat-health warning systems (HHWS) should incorporate metrics that have been shown to be effective predictors of negative heat-related health outcomes. This study contributes to the development of a HHWS for South Africa that can potentially minimize heat-related mortality. Distributed lag nonlinear models (DLNM) were used to assess the association between maximum and minimum temperature and diurnal temperature range (DTR) and population-adjusted mortality during summer months, and the effects were presented as incidence rate ratios (IRR). District-level thresholds for the best predictor from these three metrics were estimated with threshold regression. The mortality dataset contained records of daily registered deaths (n = 8,476,532) from 1997 to 2013 and data for the temperature indices were for the same period. Maximum temperature appeared to be the most statistically significant predictor of all-cause mortality with strong associations observed in 40 out of 52 districts. Maximum temperature was associated with increased risk of mortality in all but three of the districts. Our results also found that heat-related mortality was influenced by regional climate because the spatial distribution of the thresholds varied according to the climate zones across the country. On average, districts located in the hot, arid interior provinces of the Northern Cape and North West experienced some of the highest thresholds compared to districts located in temperate interior or coastal provinces. As the effects of climate change become more significant, population exposure to heat is increasing. Therefore, evidence-based HHWS are required to reduce heat-related mortality and morbidity. The exceedance of the maximum temperature thresholds provided in this study could be used to issue heat alerts as part of effective heat health action plans.


Subject(s)
Hot Temperature , Mortality , Humans , South Africa/epidemiology , Temperature , Seasons , Cities/epidemiology
9.
Environ Int ; 181: 108233, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37897873

ABSTRACT

Substance use disorder is a growing public health challenge in the United States. People who use drugs may be more vulnerable to ambient heat due to the effects of drugs on thermoregulation and their risk environment. There have been limited population-based studies of ambient temperature and drug-related morbidity. We examined short-term associations between daily ambient temperature and emergency department (ED) visits for use or overdose of amphetamine, cocaine and opioids in California during the period 2005 to 2019. Daily ZIP code-level maximum, mean, and minimum temperature exposures were derived from 1-km data Daymet products. A time-stratified case-crossover design was used to estimate cumulative non-linear associations of daily temperature for lag days 0 to 3. Stratified analyses by patient sex, race, and ethnicity were also conducted. The study included over 3.4 million drug-related ED visits. We found positive associations between daily temperature and ED visits for all outcomes examined. An increase in daily mean temperature from the 50th to the 95th percentile was associated with ED visits for amphetamine use (OR = 1.072, 95% CI: 1.058, 1.086), cocaine use (OR = 1.044, 95% CI: 1.021, 1.068 and opioid use (OR = 1.041, 95% CI: 1.025, 1.057). Stronger positive associations were also observed for overdose: amphetamine overdose (OR = 1.150, 95% CI: 1.085, 1.218), cocaine overdose (OR = 1.159, 95% CI: 1.053, 1.276), and opioid overdose (OR = 1.079, 95% CI: 1.054, 1.106). In summary, people who use stimulants and opioids may be a subpopulation sensitive to short-term higher ambient temperature. Mitigating heat exposure can be considered in harm reduction strategies in response to the substance use epidemic and global climate change.


Subject(s)
Cocaine , Drug Overdose , Humans , Amphetamine/adverse effects , Analgesics, Opioid/adverse effects , California/epidemiology , Drug Overdose/epidemiology , Emergency Service, Hospital , Temperature , United States , Cross-Over Studies
10.
Nat Commun ; 14(1): 4894, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620329

ABSTRACT

Heat-related mortality has been identified as one of the key climate extremes posing a risk to human health. Current research focuses largely on how heat mortality increases with mean global temperature rise, but it is unclear how much climate change will increase the frequency and severity of extreme summer seasons with high impact on human health. In this probabilistic analysis, we combined empirical heat-mortality relationships for 748 locations from 47 countries with climate model large ensemble data to identify probable past and future highly impactful summer seasons. Across most locations, heat mortality counts of a 1-in-100 year season in the climate of 2000 would be expected once every ten to twenty years in the climate of 2020. These return periods are projected to further shorten under warming levels of 1.5 °C and 2 °C, where heat-mortality extremes of the past climate will eventually become commonplace if no adaptation occurs. Our findings highlight the urgent need for strong mitigation and adaptation to reduce impacts on human lives.


Subject(s)
Biodiversity , Hot Temperature , Humans , Temperature , Acclimatization , Climate Change
11.
Science ; 381(6653): 32-34, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37410843

ABSTRACT

New methods are emerging to quantify human and animal welfare on a common scale, creating new tools for policy.


Subject(s)
Animal Welfare , Public Policy , Animals , Humans
12.
Clin Chest Med ; 44(3): 489-499, 2023 09.
Article in English | MEDLINE | ID: mdl-37517829

ABSTRACT

Climate change will alter environmental risks that influence pulmonary health, including heat, air pollution, and pollen. These exposures disproportionately burden populations already at risk of ill health, including those at vulnerable life stages, with low socioeconomic status, and systematically targeted by oppressive policies. Climate change can exacerbate existing environmental injustices by affecting future exposure, as well as through differentials in the ability to adapt; this is compounded by disparities in rates of underlying disease and access to health care. Climate change is therefore a dire threat not only to individual and population health but also to health equity.


Subject(s)
Air Pollution , Climate Change , Humans , Air Pollution/adverse effects
13.
Geohealth ; 7(7): e2022GH000781, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441711

ABSTRACT

The World Health Organization has identified snakebite envenoming as a highest priority neglected tropical disease, yet there is a dearth of epidemiologic research on environmental risk factors, including outdoor temperature. Temperature may affect snakebites through human behavior or snake behavior; snakes are ectotherms, meaning outdoor temperatures influence their internal body temperature and thus their behavior. Here we investigate the relationship between short-term temperature and snakebites in Georgia, one of the most biodiverse US states in terms of herpetofauna. We acquired emergency department (ED) visit data for Georgia between 1 January 2014 and 31 December 2020. Visits for venomous and non-venomous snakebites were identified using diagnosis codes. For comparison, we also considered visits for non-snake (e.g., insects, spiders, scorpions) envenomation. Daily meteorology from the Daymet 1 km product was linked to patient residential ZIP codes. We applied a case-crossover design to estimate associations of daily maximum temperature and snakebite ED visits. During the 7-year study period, there were 3,908 visits for venomous snakebites, 1,124 visits for non-venomous bites and 65,187 visits for non-snake envenomation. Across the entire period, a 1°C increase in same-day maximum temperature was associated with a 5.6% (95%CI: 4.0-7.3) increase in the odds of venomous snakebite and a 5.8% (95%CI: 3.0-8.8) increase in non-venomous snakebite. Associations were strongest in the spring. We also observed a positive and significant (p < 0.05) association for non-snake envenomation, albeit slightly smaller and more consistent across seasons compared to those for snakebites.

14.
Environ Int ; 177: 107998, 2023 07.
Article in English | MEDLINE | ID: mdl-37290290

ABSTRACT

BACKGROUND: Compared to many environmental risk factors, the relationship between pollen and asthma is understudied, including how associations may differ by pollen type and between subgroups, and how associations may be changing over time. OBJECTIVES: We evaluated the association between ambient pollen concentrations and emergency department (ED) visits for asthma and wheeze in Atlanta, Georgia during 1993-2018. We estimated overall associations for 13 individual pollen taxa, as well as associations by decade, race, age (5-17, 18-64, 65+), and insurance status (Medicaid vs non-Medicaid). METHODS: Speciated pollen data were acquired from Atlanta Allergy & Asthma, a nationally certified pollen counting station. ED visit data were obtained from individual hospitals and from the Georgia Hospital Association. We performed time-series analyses using quasi-Poisson distributed lag models, with primary analyses assessing 3-day (lag 0-2 days) pollen levels. Models controlled for day of week, holidays, air temperature, month, year, and month-by-year interactions. RESULTS: From 1993 to 2018, there were 686,259 ED visits for asthma and wheeze in the dataset, and the number of ED visits increased over time. We observed positive associations of asthma and wheeze ED visits with nine of the 13 pollen taxa: trees (maple, birch, pine, oak, willow, sycamore, and mulberry), two weeds (nettle and pigweed), and grasses. Rate ratios indicated 1-8% increases in asthma and wheeze ED visits per standard deviation increases in pollen. In general, we observed stronger associations in the earliest period (1993-2000), in younger people, and in Black patients; however, results varied by pollen taxa. CONCLUSIONS: Some, but not all, types of pollen are associated with increased ED visits for asthma/wheeze. Associations are generally higher in Black and younger patients and appear to have decreased over time.


Subject(s)
Air Pollutants , Asthma , Humans , Asthma/etiology , Pollen/chemistry , Emergency Service, Hospital , Morbidity , Poaceae , Respiratory Sounds , Air Pollutants/analysis
15.
Environ Health Perspect ; 131(4): 47003, 2023 04.
Article in English | MEDLINE | ID: mdl-37011135

ABSTRACT

BACKGROUND: Previous studies of short-term ambient air pollution exposure and asthma morbidity in the United States have been limited to a small number of cities and/or pollutants and with limited consideration of effects across ages. OBJECTIVES: To estimate acute age group-specific effects of fine and coarse particulate matter (PM), major PM components, and gaseous pollutants on emergency department (ED) visits for asthma during 2005-2014 across the United States. METHODS: We acquired ED visit and air quality data in regions surrounding 53 speciation sites in 10 states. We used quasi-Poisson log-linear time-series models with unconstrained distributed exposure lags to estimate site-specific acute effects of air pollution on asthma ED visits overall and by age group (1-4, 5-17, 18-49, 50-64, and 65+ y), controlling for meteorology, time trends, and influenza activity. We then used a Bayesian hierarchical model to estimate pooled associations from site-specific associations. RESULTS: Our analysis included 3.19 million asthma ED visits. We observed positive associations for multiday cumulative exposure to all air pollutants examined [e.g., 8-d exposure to PM2.5: rate ratio of 1.016 with 95% credible interval (CI) of (1.008, 1.025) per 6.3-µg/m3 increase, PM10-2.5: 1.014 (95% CI: 1.007, 1.020) per 9.6-µg/m3 increase, organic carbon: 1.016 (95% CI: 1.009, 1.024) per 2.8-µg/m3 increase, and ozone: 1.008 (95% CI: 0.995, 1.022) per 0.02-ppm increase]. PM2.5 and ozone showed stronger effects at shorter lags, whereas associations of traffic-related pollutants (e.g., elemental carbon and oxides of nitrogen) were generally stronger at longer lags. Most pollutants had more pronounced effects on children (<18 y old) than adults; PM2.5 had strong effects on both children and the elderly (>64 y old); and ozone had stronger effects on adults than children. CONCLUSIONS: We reported positive associations between short-term air pollution exposure and increased rates of asthma ED visits. We found that air pollution exposure posed a higher risk for children and older populations. https://doi.org/10.1289/EHP11661.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Environmental Pollutants , Ozone , Child , Adult , Humans , United States/epidemiology , Aged , Bayes Theorem , Air Pollution/analysis , Air Pollutants/analysis , Asthma/epidemiology , Particulate Matter/analysis , Ozone/analysis , Emergency Service, Hospital
16.
Proc Natl Acad Sci U S A ; 120(16): e2208450120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036985

ABSTRACT

Average ambient concentrations of nitrogen dioxide (NO2), an important air pollutant, have declined in the United States since the enactment of the Clean Air Act. Despite evidence that NO2 disproportionately affects racial/ethnic minority groups, it remains unclear what drives the exposure disparities and how they have changed over time. Here, we provide evidence by integrating high-resolution (1 km × 1 km) ground-level NO2 estimates, sociodemographic information, and source-specific emission intensity and location for 217,740 block groups across the contiguous United States from 2000 to 2016. We show that racial/ethnic minorities are disproportionately exposed to higher levels of NO2 pollution compared with Whites across the United States and within major metropolitan areas. These inequities persisted over time and have worsened in many cases, despite a significant decrease in the national average NO2 concentration over the 17-y study period. Overall, traffic contributes the largest fraction of NO2 disparity. Contributions of other emission sources to exposure disparities vary by location. Our analyses offer insights into policies aimed at reducing air pollution exposure disparities among races/ethnicities and locations.


Subject(s)
Air Pollution , Health Status Disparities , Nitrogen Dioxide , United States/ethnology , Nitrogen Dioxide/toxicity , Socioeconomic Disparities in Health , Spatio-Temporal Analysis , Racial Groups , Ethnicity , Time Factors , Humans
17.
Environ Int ; 174: 107825, 2023 04.
Article in English | MEDLINE | ID: mdl-36934570

ABSTRACT

BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.


Subject(s)
Air Pollution , Cardiovascular Diseases , Environmental Exposure , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Cardiovascular Diseases/mortality , Cities/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollutants , Hot Temperature , Mortality , Particulate Matter/adverse effects , Particulate Matter/analysis , Respiratory Tract Diseases/epidemiology
18.
Environ Epidemiol ; 7(1): e237, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777523

ABSTRACT

Dementia is a seriously disabling illness with substantial economic and social burdens. Alzheimer's disease and its related dementias (AD/ADRD) constitute about two-thirds of dementias. AD/ADRD patients have a high prevalence of comorbid conditions that are known to be exacerbated by exposure to ambient air pollution. Existing studies mostly focused on the long-term association between air pollution and AD/ADRD morbidity, while very few have investigated short-term associations. This study aims to estimate short-term associations between AD/ADRD emergency department (ED) visits and three common air pollutants: fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-season ozone. Methods: For the period 2005 to 2015, we analyzed over 7.5 million AD/ADRD ED visits in five US states (California, Missouri, North Carolina, New Jersey, and New York) using a time-stratified case-crossover design with conditional logistic regression. Daily estimated PM2.5, NO2, and warm-season ozone concentrations at 1 km spatial resolution were aggregated to the ZIP code level as exposure. Results: The most consistent positive association was found for NO2. Across five states, a 17.1 ppb increase in NO2 concentration over a 4-day period was associated with a 0.61% (95% confidence interval = 0.27%, 0.95%) increase in AD/ADRD ED visits. For PM2.5, a positive association with AD/ADRD ED visits was found only in New York (0.64%, 95% confidence interval = 0.26%, 1.01% per 6.3 µg/m3). Associations with warm-season ozone levels were null. Conclusions: Our results suggest AD/ADRD patients are vulnerable to short-term health effects of ambient air pollution and strategies to lower exposure may reduce morbidity.

19.
Circulation ; 147(1): 35-46, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36503273

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Ischemia , Stroke , Humans , Hot Temperature , Temperature , Cause of Death , Cold Temperature , Death , Mortality
20.
Environ Res ; 220: 115176, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36584844

ABSTRACT

BACKGROUND: Ambient temperatures are projected to increase in the future due to climate change. Alzheimer's disease (AD) and Alzheimer's disease-related dementia (ADRD) affect millions of individuals and represent substantial health burdens in the US. High temperature may be a risk factor for AD/ADRD outcomes with several recent studies reporting associations between temperature and AD mortality. However, the link between heat and AD morbidity is poorly understood. METHODS: We examined short-term associations between warm-season daily ambient temperature and AD/ADRD emergency department (ED) visits for individuals aged 45 years or above during the warm season (May to October) for up to 14 years (2005-2018) in five US states: California, Missouri, North Carolina, New Jersey, and New York. Daily ZIP code-level maximum, average and minimum temperature exposures were derived from 1 km gridded Daymet products. Associations are assessed using a time-stratified case-crossover design using conditional logistic regression. RESULTS: We found consistent positive short-term effects of ambient temperature among 3.4 million AD/ADRD ED visits across five states. An increase of the 3-day cumulative temperature exposure of daily average temperature from the 50th to the 95th percentile was associated with a pooled odds ratio of 1.042 (95% CI: 1.034, 1.051) for AD/ADRD ED visits. We observed evidence of the association being stronger for patients 65-74 years of age and for ED visits that led to hospital admissions. Temperature associations were also stronger among AD/ADRD ED visits compared to ED visits for other reasons, particularly among patients aged 65-74 years. CONCLUSION: People with AD/ADRD may represent a vulnerable population affected by short-term exposure to high temperature. Our results support the development of targeted strategies to reduce heat-related AD/ADRD morbidity in the context of global warming.


Subject(s)
Alzheimer Disease , Humans , Aged , Seasons , Temperature , Alzheimer Disease/epidemiology , Emergency Service, Hospital , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...