Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 1656, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472219

ABSTRACT

The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W-1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.

3.
Angew Chem Int Ed Engl ; 62(27): e202218174, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-36951117

ABSTRACT

Back-contact architectures offer a promising route to improve the record efficiencies of perovskite solar cells (PSCs) by eliminating parasitic light absorption. However, the performance of back-contact PSCs is limited by inadequate carrier diffusion in perovskite. Here, we report that perovskite films with a preferred out-of-plane orientation show improved carrier dynamic properties. With the addition of guanidine thiocyanate, the films exhibit carrier lifetimes and mobilities increased by 3-5 times, leading to diffusion lengths exceeding 7 µm. The enhanced carrier diffusion results from substantial suppression of nonradiative recombination and improves charge collection. Devices using such films achieve reproducible efficiencies reaching 11.2 %, among the best performances for back-contact PSCs. Our findings demonstrate the impact of carrier dynamics on back-contact PSCs and provide the basis for a new route to high-performance back-contact perovskite optoelectronic devices at low cost.

4.
ACS Appl Mater Interfaces ; 13(47): 56217-56225, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34783523

ABSTRACT

Small-area metal-halide perovskite solar cells (PSCs) having power-conversion efficiencies (PCEs) of greater than 25% can be prepared by using a spin-coated perovskite layer, but this technique is not readily transferrable to large-scale manufacturing. Drop-casting is a simple alternative method for film formation that is more closely aligned to industry-relevant coating processes. In the present work, drop-casting was used to prepare films for screening two-dimensional Ruddlesden-Popper (2DRP) metal-halide perovskite formulations for potential utility in PSCs, without additional processing steps such as inert-gas blowing or application of antisolvent. The composition of the 2DRP formulation used for drop-casting was found to have a profound effect on optical, spectroscopic, morphological, and phase-distribution properties of the films as well as the photovoltaic performance of related PSC devices. This facile method for screening film quality greatly assists in speeding up the identification of perovskite formulations of interest. The optimal 2DRP perovskite formulation identified from screening was utilized for industry-relevant one-step roll-to-roll slot-die coating on a flexible plastic substrate, producing PSCs having PCEs of up to 8.8%. A mechanism describing film formation and phase distribution in the films is also proposed.

5.
ACS Appl Mater Interfaces ; 13(34): 40441-40450, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34423640

ABSTRACT

Organic luminogens have been widely used in optoelectronic devices, bioimaging, and sensing. Conventionally, the synthesis of organic luminogens requires sophisticated, multistep design, reaction, and isolation procedures. Herein, the products of the melt-phase condensation of benzoguanamine (BG; 2,4-diamino-6-phenyl-1,3,5-triazine) at 370-410 °C display interesting reaction-condition-dependent luminescence properties, including photoluminescence (PL) at a variety of wavelengths in the visible spectrum and quantum efficiencies (PLQE) of up to 58% in the powder form. With a simple and straightforward solvent washing procedure, the prominent blue luminescent component BG dimer was obtained in gram scale with >93% purity (96.5% purity after fractional sublimation). The BG dimer exhibited distinct aggregation-induced emission (AIE) properties. PL measurements indicate that the electronically excited state of the BG dimer undergoes efficient intramolecular nonradiative deactivation in room-temperature solution, leading to a significantly reduced PLQE (<0.1%) in solution. These nonradiative processes are substantially inhibited when the dimer existed in the form of crystals, solid aggregates in solution or being fixed in a rigid polymer film, resulting in a significant increase in the PLQE and lifetime. This work not only provided a new understanding for PL properties of self-condensation luminescent products but also represented an unconventional strategy for large-scale preparation of organic luminogens with high purity.

6.
ACS Nano ; 15(1): 1454-1464, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33439631

ABSTRACT

The extensive use of halomethanes (CH3X, X = F, Cl, Br, I) as refrigerants, propellants, and pesticides has drawn serious concern due to their adverse biological and atmospheric impact. However, there are currently no portable rapid and accurate monitoring systems for their detection. This work introduces an approach for the selective and sensitive detection of halomethanes using photoluminescence spectral shifts in cesium lead halide perovskite nanocrystals. Focusing on iodomethane (CH3I) as a model system, it is shown that cesium lead bromide (CsPbBr3) nanocrystals can undergo rapid (<5 s) halide exchange, but only after exposure to oleylamine to induce nucleophilic substitution of the CH3I and release the iodide species. The extent of the halide exchange is directly dependent on the CH3I concentration, with the photoluminescence emission of the CsPbBr3 nanocrystals exhibiting a redshift of more than 150 nm upon the addition of 10 ppmv of CH3I. This represents the widest detection range and the highest sensitivity to the detection of halomethanes using a low-cost and portable approach reported to date. Furthermore, inherent selectivity for halomethanes compared to other organohalide analogues is achieved through the dramatic differences in their alkylation reactivity.

7.
ACS Appl Mater Interfaces ; 12(7): 8260-8270, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31992043

ABSTRACT

High efficiency and environmental stability are mandatory performance requirements for commercialization of perovskite solar cells (PSCs). Herein, efficient centimeter-scale PSCs with improved stability were achieved by incorporating an additive-free 2,2',7,7'-tetrakis[N,N-di(p-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) hole-transporting material (HTM) through simply substituting the usual chlorobenzene solvent with pentachloroethane (PC). A stabilized power conversion efficiency (PCE) of 16.1% under simulated AM 1.5G 1 sun illumination with an aperture of 1.00 cm2 was achieved for PSCs using an additive-free spiro-OMeTAD layer cast from PC. X-ray analysis suggested that chlorine radicals from PC transfer partially to spiro-OMeTAD and are retained in the HTM layer, resulting in conductivity improvement. Moreover, unencapsulated PSCs with a centimeter-scale active area cast from PC retained >70% of their initial PCE after ageing at 80 °C for 500 h, in contrast with less than 20% retention for control devices. Morphological and X-ray analyses of the aged cells revealed that the perovskite and HTM layers remain almost unchanged in the cells with a spiro-OMeTAD layer cast from PC whereas serious degradation occurred in the control cells. This study not only reveals the decomposition mechanism of PSCs in the presence of HTM additives but also opens up a broad range of organic semiconductors for radical doping.

8.
J Am Chem Soc ; 141(44): 17646-17658, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31545022

ABSTRACT

We report the discovery of a tandem catalytic process to reduce energy demanding substrates, using the [Ir(ppy)2(dtb-bpy)]+ (1+) photocatalyst. The immediate products of photoinitiated electron transfer (PET) between 1+ and triethylamine (TEA) undergo subsequent reactions to generate a previously unknown, highly reducing species (2). Formation of 2 occurs via reduction and semisaturation of the ancillary dtb-bpy ligand, where the TEA radical cation serves as an effective hydrogen atom donor, confirmed by nuclear magnetic resonance, mass spectrometry, and deuterium labeling experiments. Steady-state and time-resolved luminescence and absorption studies reveal that upon irradiation, 2 undergoes electron transfer or proton-coupled electron transfer (PCET) with a representative acceptor (N-(diphenylmethylene)-1-phenylmethanamine; S). Turnover of this new photocatalytic cycle occurs along with the reformation of 1+. We rationalize our observations by proposing the first example of a mechanistic pathway where two distinct yet interconnected photoredox cycles provide access to an extended reduction potential window capable of engaging a wide range of energy demanding and synthetically relevant organic substrates including aryl halides.

9.
J Phys Chem Lett ; 10(16): 4675-4682, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31328525

ABSTRACT

Chemical doping is a ubiquitously applied strategy to improve the charge-transfer and conductivity characteristics of spiro-OMeTAD, a hole-transporting material (HTM) used widely in solution-processed perovskite solar cells (PSCs). Cobalt(III) complexes are commonly employed HTM dopants, whose major role is to oxidize spiro-OMeTAD to provide p-doping for improved conductivity. The present work discloses additional, previously unknown important functions of cobalt complexes in the HTM films that influence the photovoltaic performance. Specifically, it is demonstrated that commercial p-dopant FK269 (bis(2,6-di(1H-pyrazol-1-yl)pyridine) cobalt(III) tris(bis(trifluoromethylsulfonyl)imide)) reduces the interfacial recombination and alleviates the decomposition of the perovskite layer under the action of tert-butylpyridine and lithium bis(trifluoromethanesulfonyl)imide. These effects are demonstrated for 1 cm2 perovskite solar cells that achieve a stabilized power conversion efficiency of 19% under 1 sun irradiation.

11.
Org Lett ; 20(4): 905-908, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29381072

ABSTRACT

A visible-light photocalytic method for the chemoselective transfer hydrogenation of imines in batch and continuous flow is described. The reaction utilizes Et3N as both hydrogen source and single-electron donor, enabling the selective reduction of imines derived from diarylketimines containing other reducible functional groups including nitriles, halides, esters, and ketones. The dual role of Et3N was confirmed by fluorescence quenching measurements, transient absorption spectroscopy, and deuterium-labeling studies. Continuous-flow processing facilitates straightforward scale-up of the reaction.

12.
J Phys Chem A ; 119(12): 2770-9, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25719256

ABSTRACT

Bimolecular fluorescence-quenching reactions involving electron-transfer between electronically excited 5,10,15,20-tetraphenyl-21H,23H-porphine (TPP*) and 1,4-benzoquinone (BQ) or 1,4-naphthoquinone (NQ) were investigated using a set of alkane solvents that enabled the rapid reaction kinetics to be probed over a wide viscosity range, while minimizing changes in other relevant solvent parameters. Relative diffusion coefficients and reaction distances were recovered directly from analysis of fluorescence decay curves measured on a nanosecond time scale. The electron transfer from TPP* to BQ requires reactant contact, consistent with tightly associated exciplex formation in these nonpolar solvents. In contrast, electron transfer from TPP* to NQ displays a clear distance dependence, indicative of reaction via a much looser noncontact exciplex. This difference is attributed to the greater steric hindrance associated with contact between the TPP*/NQ pair. The diffusion coefficients recovered from fluorescence decay curve analysis are markedly smaller than the corresponding measured bulk relative diffusion coefficients. Classical hydrodynamics theory was found to provide a satisfactory resolution of this apparent discrepancy. The calculated hydrodynamic radii of TPP and NQ correlate very well with the van der Waals values. The hydrodynamic radius obtained for BQ is a factor of 6 times smaller than the van der Waals value, indicative of a possible tight cofacial geometry in the (TPP(+)/BQ(-))* exciplex. The present work demonstrates the utility of a straightforward methodology, based on widely available instrumentation and data analysis, that is broadly applicable for direct determination of kinetic parameter values for a wide variety of rapid bimolecular fluorescence quenching reactions in fluid solution.


Subject(s)
Alkanes/chemistry , Benzoquinones/chemistry , Diffusion , Naphthoquinones/chemistry , Photochemical Processes , Porphyrins/chemistry , Solvents/chemistry , Electron Transport , Hydrodynamics , Quantum Theory
13.
J Phys Chem B ; 118(24): 6839-49, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24842567

ABSTRACT

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl)dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using (1)H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material.

14.
Photochem Photobiol ; 86(5): 1109-17, 2010.
Article in English | MEDLINE | ID: mdl-20670362

ABSTRACT

The photodynamic action of a novel photoactive polymer comprising covalently bound anthraquinone (AQ) moieties was evaluated after developing a methodology to reliably immobilize viable micro-organisms onto polymer film surfaces. The survival of Escherichia coli, Bacillus cereus (vegetative cells and spores), Fusarium oxysporum and Saccharomyces cerevisiae microbes inoculated on the surface of inert polymeric substrates was assessed to determine the effect of inoculum composition, drying rate and exposure to ultraviolet (UV-A) radiation. Their survival was highly dependent on microbial genus, with E. coli consistently displaying markedly shorter survival times than the other microbes, and B. cereus spores being the most resistant. Inoculation of the microbes onto the surface of the photoactive polymer films, followed by exposure to UV-A radiation, dramatically accelerated the inactivation of all microbial types studied compared with their survival on the surface of inert polymer substrates. Simultaneous exposure to both oxygen and UV-A radiation is required to affect cell survival, which is consistent with this effect most likely originating from the photoinduced production of singlet oxygen by the photoactive polymer. These results provide further compelling evidence that singlet oxygen produced exogenously by this photoactive polymeric substrate can successfully inactivate a broad spectrum of microbes on the substrate's surface.


Subject(s)
Food Contamination , Photochemistry , Polymers/chemistry , Food Contamination/prevention & control , Food Microbiology , Molecular Structure , Polymers/radiation effects , Saccharomyces cerevisiae/radiation effects , Surface Properties
15.
J Phys Chem A ; 112(24): 5378-84, 2008 Jun 19.
Article in English | MEDLINE | ID: mdl-18507362

ABSTRACT

The quenching of the fluorescence decay of electronically excited 5,10,15,20-tetraphenyl- 21H, 23H-porphinetetrasulfonate (TPPS (4-)*) in the presence of methylviologen cations (MV (2+)) was measured at various ionic strengths in methanol. Analysis of the fluorescence decay curves revealed strong evidence for the presence of a second fluorescent species over the entire range of ionic strength used in this work, which is attributed to solvent-separated ion pairs (TPPS (4-)-S-MV (2+)). Transient effects of the fluorescence decays were analyzed, and values for the effective reaction distance, R NH, and the diffusion coefficients, D, were obtained. Diffusion coefficients were independently measured for TPPS (4-) and MV (2+) using the Taylor dispersion method. The values for D obtained by the analysis of the transient effect were found to be smaller than those for the sum of the diffusion coefficients of TPPS (4-) and MV (2+) obtained by the Taylor dispersion method and a possible explanation for this result is given.


Subject(s)
Methanol/chemistry , Paraquat/chemistry , Porphyrins/chemistry , Cations/chemistry , Diffusion , Fluorescence , Kinetics , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...