Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Genes (Basel) ; 14(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37895190

ABSTRACT

American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.


Subject(s)
Breeding , Genome , Humans , Cattle/genetics , Animals , United States , Heterozygote , Linkage Disequilibrium , Agriculture
2.
Ecol Appl ; 33(8): e2915, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635644

ABSTRACT

Despite growing interest in conservation and re-establishment of ecological connectivity, few studies have explored its context-specific social-ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder-identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual-based ecological modeling, to explore social-ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual-based models suggested that the potential for a large, migratory life history form of YCT, in addition to self-preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly.


Subject(s)
Oncorhynchus mykiss , Oncorhynchus , Animals , Rivers , Models, Theoretical , Ecosystem
3.
Mol Ecol Resour ; 23(6): 1458-1472, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37081173

ABSTRACT

Adaptive capacity can present challenges for modelling as it encompasses multiple ecological and evolutionary processes such as natural selection, genetic drift, gene flow and phenotypic plasticity. Spatially explicit, individual-based models provide an outlet for simulating these complex interacting eco-evolutionary processes. We expanded the existing Cost-Distance Meta-POPulation (CDMetaPOP) framework with inducible plasticity modelled as a habitat selection behaviour, using temperature or habitat quality variables, with a genetically based selection threshold conditioned on past individual experience. To demonstrate expected results in the new module, we simulated hypothetical populations and then evaluated model performance in populations of redband trout (Oncorhynchus mykiss gairdneri) across three watersheds where temperatures induce physiological stress in parts of the stream network. We ran simulations using projected warming stream temperature data under four scenarios for alleles that: (1) confer thermal tolerance, (2) bestow plastic habitat selection, (3) give both thermal tolerance and habitat selection preference and (4) do not provide either thermal tolerance or habitat selection. Inclusion of an adaptive allele decreased declines in population sizes, but this impact was greatly reduced in the relatively cool stream networks. As anticipated with the new module, high-temperature patches remained unoccupied by individuals with the allele operating plastically after exposure to warm temperatures. Using complete habitat avoidance above the stressful temperature threshold, habitat selection reduced the overall population size due to the opportunity cost of avoiding areas with increased, but not guaranteed, mortality. Inclusion of plasticity within CDMetaPOP will provide the potential for genetic or plastic traits and 'rescue' to affect eco-evolutionary dynamics for research questions and conservation applications.


Subject(s)
Biological Evolution , Genetic Drift , Temperature , Selection, Genetic , Ecosystem
4.
Mol Ecol ; 32(4): 800-818, 2023 02.
Article in English | MEDLINE | ID: mdl-36478624

ABSTRACT

Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low-coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype-environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high-elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high-elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Acclimatization/genetics , Genome/genetics , Adaptation, Physiological/genetics , Gene Frequency/genetics , Polymorphism, Single Nucleotide/genetics
5.
Evol Appl ; 15(1): 3-21, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35126645

ABSTRACT

The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.

6.
Ecol Evol ; 11(23): 16890-16908, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938480

ABSTRACT

Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome-environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)-a species of important economic, social, cultural, and ecological value-in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool-seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration-specific and spawning site-specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.

7.
Glob Chang Biol ; 27(12): 2656-2668, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33666302

ABSTRACT

Adaptive capacity is a topic at the forefront of environmental change research with roots in both social, ecological, and evolutionary science. It is closely related to the evolutionary biology concept of adaptive potential. In this systematic literature review, we: (1) summarize the history of these topics and related fields; (2) assess relationship(s) between the concepts among disciplines and the use of the terms in climate change research, and evaluate methodologies, metrics, taxa biases, and the geographic scale of studies; and (3) provide a synthetic conceptual framework to clarify concepts. Bibliometric analyses revealed the terms have been used most frequently in conservation and evolutionary biology journals, respectively. There has been a greater growth in studies of adaptive potential than adaptive capacity since 2001, but a greater geographical extent of adaptive capacity studies. Few studies include both, and use is often superficial. Our synthesis considers adaptive potential as one process contributing to adaptive capacity of complex systems, notes "sociological" adaptive capacity definitions include actions aimed at desired outcome (i.e., policies) as a system driver whereas "biological" definitions exclude such drivers, and suggests models of adaptive capacity require integration of evolutionary and social-ecological system components.


Subject(s)
Conservation of Natural Resources , Ecosystem , Climate Change , Geography , Policy
8.
Heredity (Edinb) ; 126(5): 790-804, 2021 05.
Article in English | MEDLINE | ID: mdl-33536638

ABSTRACT

Phenotypic variation among populations is thought to be generated from spatial heterogeneity in environments that exert selection pressures that overcome the effects of gene flow and genetic drift. Here, we tested for evidence of isolation by distance or by ecology (i.e., ecological adaptation) to generate variation in early life history traits and phenotypic plasticity among 13 wood frog populations spanning 1200 km and 7° latitude. We conducted a common garden experiment and related trait variation to an ecological gradient derived from an ecological niche model (ENM) validated to account for population density variation. Shorter larval periods, smaller body weight, and relative leg lengths were exhibited by populations with colder mean annual temperatures, greater precipitation, and less seasonality in precipitation and higher population density (high-suitability ENM values). After accounting for neutral genetic variation, the QST-FST analysis supported ecological selection as the key process generating population divergence. Further, the relationship between ecology and traits was dependent upon larval density. Specifically, high-suitability/high-density populations in the northern part of the range were better at coping with greater conspecific competition, evidenced by greater postmetamorphic survival and no difference in body weight when reared under stressful conditions of high larval density. Our results support that both climate and competition selection pressures drive clinal variation in larval and metamorphic traits in this species. Range-wide studies like this one are essential for accurate predictions of population's responses to ongoing ecological change.


Subject(s)
Life History Traits , Selection, Genetic , Adaptation, Physiological/genetics , Animals , Gene Flow , Ranidae/genetics
9.
Ecol Appl ; 31(2): e2236, 2021 03.
Article in English | MEDLINE | ID: mdl-33052615

ABSTRACT

Species distribution estimates are often used to understand the niche of a species; however, these are often based solely on climatic predictors. When the influences of biotic factors are ignored, erroneous inferences about range and niche may be made. We aimed to integrate climate data with a unique set of available land cover and land use data for the six cold-adapted amphibians of North America (Ambystoma macrodactylum, Anaxyrus hemiophrys, Anaxyrus boreas, Pseudacris maculata, Rana sylvatica, Rana luteiventris) to determine the relative importance of climate and non-climate drivers through the use of ecological niche models for present-day range estimates. We compared climate-only, land use-only, and combination models of climate and land use, derived from two different model selection techniques, to determine which was most likely to drive current distributions of cold-adapted amphibian species. Land use layers included land cover type, human population, vegetation type, ecoregion, and the overall human footprint. The most supported models included both climate and land use, with climate and human footprint variables having the highest permutation importance and percent contribution. Models that incorporated climate and land use data performed best as measured with AIC and AUC, although qualitatively most underestimated the northern range edge, implying potential sampling bias or locations of reduced habitat quality for these species in the northern area of the ranges. There were small differences in overall combination models dependent on the method of model selection. The overall effect sizes of landscape factors within the combination models were small except for one landscape feature: human footprint, which incorporated multiple aspects of anthropogenic change on the landscape, including human population density, travel access, and agricultural impact. This aspect of the landscape was just as important as climate, and counter to what we expected, the association was mostly positive, with a negative response only occurring at very high levels. This highlights the importance of moving beyond climate only species range estimates as land cover, specifically human impact, may be driving the patterns of species' ranges.


Subject(s)
Amphibians , Ecosystem , Ambystoma , Animals , Climate Change , Humans , Models, Theoretical , North America , Population Density , United States
10.
Ecol Evol ; 9(9): 5063-5078, 2019 May.
Article in English | MEDLINE | ID: mdl-31110662

ABSTRACT

A critical decision in landscape genetic studies is whether to use individuals or populations as the sampling unit. This decision affects the time and cost of sampling and may affect ecological inference. We analyzed 334 Columbia spotted frogs at 8 microsatellite loci across 40 sites in northern Idaho to determine how inferences from landscape genetic analyses would vary with sampling design. At all sites, we compared a proportion available sampling scheme (PASS), in which all samples were used, to resampled datasets of 2-11 individuals. Additionally, we compared a population sampling scheme (PSS) to an individual sampling scheme (ISS) at 18 sites with sufficient sample size. We applied an information theoretic approach with both restricted maximum likelihood and maximum likelihood estimation to evaluate competing landscape resistance hypotheses. We found that PSS supported low-density forest when restricted maximum likelihood was used, but a combination model of most variables when maximum likelihood was used. We also saw variations when AIC was used compared to BIC. ISS supported this model as well as additional models when testing hypotheses of land cover types that create the greatest resistance to gene flow for Columbia spotted frogs. Increased sampling density and study extent, seen by comparing PSS to PASS, showed a change in model support. As number of individuals increased, model support converged at 7-9 individuals for ISS to PSS. ISS may be useful to increase study extent and sampling density, but may lack power to provide strong support for the correct model with microsatellite datasets. Our results highlight the importance of additional research on sampling design effects on landscape genetics inference.

11.
Integr Comp Biol ; 55(4): 602-17, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269462

ABSTRACT

One of the major challenges for conservation physiologists is to determine how current or future environmental conditions relate to the health of animals at the population level. In this study, we measured prevalence of disease, mean condition of the body, and mean resting levels of corticosterone and testosterone in a total of 28 populations across the years 2011 and 2012, and correlated these measures of health to climatic suitability of habitat, using estimates from a model of the ecological niche of the wood frog's geographic range. Using the core-periphery hypothesis as a theoretical framework, we predicted a higher prevalence and intensity of infection of Batrachochytrium dendrobatidis (Bd) and ranaviruses, two major amphibian pathogens causing disease, and higher resting levels of circulating corticosterone, an indicator of allostatic load incurred from living in marginal habitats. We found that Bd infections were rare (2% of individuals tested), while infections with ranavirus were much more common: ranavirus-infected individuals were found in 92% of ponds tested over the 2 years. Contrary to our predictions, rates of infection with ranaviruses were positively correlated with quality of the habitat with the highest prevalence at the core of the range, and plasma corticosterone concentrations measured when frogs were at rest were not correlated with quality of the habitat, the prevalence of ranavirus, or the intensity of infection. Prevalence and mean viral titers of ranavirus infection were higher in 2012 than in 2011, which coincided with lower levels of circulating corticosterone and testosterone and an extremely early time of breeding due to relatively higher temperatures during the winter. In addition, the odds of having a ranavirus infection increased with decreased body condition, and if animals had an infection, viral titers were positively correlated to levels of circulating testosterone concentration. By resolving these patterns, experiments can be designed to test hypotheses about the mechanisms that produce them, such as whether transmission of the ranavirus and tolerance of the host are greater or whether virulence is lower in populations within core habitats. While there is debate about which metrics serve as the best bioindicators of population health, the findings of this study demonstrate the importance of long-term monitoring of multiple physiological parameters to better understand the dynamic relationship between the environment and the health of wildlife populations over space and time.


Subject(s)
Mycoses/veterinary , Rana clamitans , Virus Diseases/veterinary , Animal Distribution , Animals , Chytridiomycota , Mycoses/epidemiology , Mycoses/microbiology , Prevalence , Ranavirus/isolation & purification , United States/epidemiology , Virus Diseases/epidemiology , Virus Diseases/virology
12.
Biol Blood Marrow Transplant ; 15(4): 416-20, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19285628

ABSTRACT

Consensus guidelines recommend various screening examinations for survivors after allogeneic hematopoietic cell transplantation (HCT), but how often these examinations detect abnormal findings is unknown. We reviewed the medical records of 118 patients who received comprehensive, standardized evaluations at 1 year after allogeneic HCT at Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance. Abnormal findings were common, including moderate to severe pulmonary dysfunction (16%), fasting hyperlipidemia (56%), osteopenia (52%), osteoporosis (6%), and active chronic graft-versus-host disease (cGVHD) (64%). Recurrent malignancy (4%) and cGVHD (29%) were detected in previously unsuspected cases. Only 3% of patients had no abnormal findings. We conclude that comprehensive evaluation at 1 year after allogeneic HCT detects a high prevalence of medical problems. Longer follow-up is needed to determine whether early detection and intervention affect later morbidity and mortality.


Subject(s)
Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation , Hyperlipidemias/mortality , Lung Diseases/mortality , Osteoporosis/mortality , Adult , Fasting , Female , Follow-Up Studies , Graft vs Host Disease/pathology , Guidelines as Topic , Humans , Hyperlipidemias/pathology , Lung Diseases/etiology , Lung Diseases/pathology , Male , Osteoporosis/pathology , Prevalence , Time Factors , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...