Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Nitric Oxide ; 150: 37-46, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39038732

ABSTRACT

The combination of nitric oxide (NO) donors with nanomaterials has emerged as a promising approach to reduce postharvest losses. The encapsulation of NO donors provides protection from rapid degradation and controlled release, enhancing the NO effectiveness in postharvest treatments. Moreover, the application method can also influence postharvest responses. In this study, two application methods were evaluated, spraying and immersion, using S-nitrosoglutathione (GSNO, a NO donor) in free and encapsulated forms on papaya fruit. Our hypothesis was that GSNO encapsulated in chitosan nanoparticles would outperform the free form in delaying fruit senescence. In addition, this study marks the pioneering characterization of chitosan nanoparticles containing GSNO within the framework of a postharvest investigation. Overall, our findings indicate that applying encapsulated GSNO (GSNO-NP-S) through spraying preserves the quality of papaya fruit during storage. This method not only minimizes weight loss, ethylene production, and softening, but also stimulates antioxidant responses, thereby mitigating oxidative damage. Consequently, it stands out as the promising technique for delaying papaya fruit senescence. This innovative approach holds the potential to enhance postharvest practices and advance sustainable agriculture.


Subject(s)
Carica , Chitosan , Fruit , Nitric Oxide Donors , S-Nitrosoglutathione , Carica/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Fruit/chemistry , S-Nitrosoglutathione/pharmacology , S-Nitrosoglutathione/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Oxidative Stress/drug effects , Nanoparticles/chemistry , Food Preservation/methods
2.
Int J Biol Macromol ; 270(Pt 1): 132218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750844

ABSTRACT

Botrytis cinerea and Penicillium expansum are phytopathogenic fungi that produce the deterioration of fruits. Thus, essential oil (EO) has emerged as a sustainable strategy to minimize the use of synthetic fungicides, but their volatility and scarce solubility restrict their application. This study proposes the EO of Oreganum vulgare and Thymus vulgaris-loaded solid lipid nanoparticles (SLN) based chitosan/PVA hydrogels to reduce the infestation of fungi phytopathogen. EO of O. vulgare and T. vulgaris-loaded SLN had a good homogeneity (0.21-0.35) and stability (-28.8 to -33.0 mV) with a mean size of 180.4-188.4 nm. The optimization of EO-loaded SLN showed that the encapsulation of 800 and 1200 µL L-1 of EO of O vulgare and T. vulgaris had the best particle size. EO-loaded SLN significantly reduced the mycelial growth and spore germination of both fungi pathogen. EO-loaded SLN into hydrogels showed appropriate physicochemical characteristics to apply under environmental conditions. Furthermore, rheological analyses evidenced that hydrogels had solid-like characteristics and elastic behavior. EO-loaded SLN-based hydrogels inhibited the spore germination in B. cinerea (80.9 %) and P. expansum (55.7 %). These results show that SLN and hydrogels are eco-friendly strategies for applying EO with antifungal activity.


Subject(s)
Botrytis , Chitosan , Hydrogels , Nanoparticles , Oils, Volatile , Penicillium , Chitosan/chemistry , Botrytis/drug effects , Botrytis/growth & development , Penicillium/drug effects , Penicillium/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hydrogels/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Rheology , Particle Size , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Liposomes
3.
Antibiotics (Basel) ; 13(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38534650

ABSTRACT

Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.

4.
Nanomaterials (Basel) ; 14(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334570

ABSTRACT

Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO2, ZnO nanoparticles, and nanocomposites of TiO2 and ZnO supported on SPIONs (SPION@SiO2@TiO2 and SPION@SiO2@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation. The effects of the initial pH, catalyst type, and dose were evaluated. The nanocomposites of SPION@SiO2@TiO2 and SPION@SiO2@ZnO showed higher CP photodegradation levels than free nanoparticles, reaching 95.6% and 82.3%, respectively, at pH 7. The findings indicate that iron oxide, as a support material for TiO2 and ZnO, extended absorption edges and delayed the electron-hole recombination of the nanocomposites, improving their photocatalytic efficiency. At the same time, these nanocomposites, especially SPION@SiO2@TiO2, showed efficient degradation of 3,5,6-trichloropyridinol (TCP), one of the final metabolites of CP. The stability and reuse of this nanocomposite were also evaluated, with 74.6% efficiency found after six cycles. Therefore, this nanomaterial represents an eco-friendly, reusable, and effective alternative for the degradation of chlorpyrifos in wastewater treatment.

5.
Antibiotics (Basel) ; 13(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391559

ABSTRACT

Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR. The primary contributors to the escalation of AMR are the misuse and overuse of various antimicrobial agents in healthcare settings. This has led to severe consequences not only in terms of compromised treatment outcomes but also in terms of substantial financial burdens. The economic impact of AMR is reflected in skyrocketing healthcare costs attributed to heightened hospital admissions and increased drug usage. To address this critical issue, it is imperative to implement effective strategies for antimicrobial therapies. This comprehensive review will explore the latest scientific breakthroughs within the metal-organic frameworks and the use of mesoporous metallic oxide derivates as antimicrobial agents. We will explore their biomedical applications in human health, shedding light on promising avenues for combating AMR. Finally, we will conclude the current state of research and offer perspectives on the future development of these nanomaterials in the ongoing battle against AMR.

6.
Nanomaterials (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446494

ABSTRACT

The excessive application of pesticides and fertilizers has generated losses in biological diversity, environmental pollution, and harmful effects on human health. Under this context, nanotechnology constitutes an innovative tool to alleviate these problems. Notably, applying nanocarriers as controlled release systems (CRSs) for agrochemicals can overcome the limitations of conventional products. A CRS for agrochemicals is an eco-friendly strategy for the ecosystem and human health. Nanopesticides based on synthetic and natural polymers, nanoemulsions, lipid nanoparticles, and nanofibers reduce phytopathogens and plant diseases. Nanoproducts designed with an environmentally responsive, controlled release offer great potential to create formulations that respond to specific environmental stimuli. The formulation of nanofertilizers is focused on enhancing the action of nutrients and growth stimulators, which show an improved nutrient release with site-specific action using nanohydroxyapatite, nanoclays, chitosan nanoparticles, mesoporous silica nanoparticles, and amorphous calcium phosphate. However, despite the noticeable results for nanopesticides and nanofertilizers, research still needs to be improved. Here, we review the relevant antecedents in this topic and discuss limitations and future challenges.

7.
Pharmaceutics ; 15(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37514157

ABSTRACT

Melanoma is a serious and aggressive type of skin cancer with growing incidence, and it is the leading cause of death among those affected by this disease. Although surgical resection has been employed as a first-line treatment for the early stages of the tumor, noninvasive topical treatments might represent an alternative option. However, they can be irritating to the skin and result in undesirable side effects. In this context, the potential of topical polymeric hydrogels has been investigated for biomedical applications to overcome current limitations. Due to their biocompatible properties, hydrogels have been considered ideal candidates to improve local therapy and promote wound repair. Moreover, drug combinations incorporated into the polymeric-based matrix have emerged as a promising approach to improve the efficacy of cancer therapy, making them suitable vehicles for drug delivery. In this work, we demonstrate the synthesis and characterization of Pluronic F-127 hydrogels (PL) containing the nitric oxide donor S-nitrosoglutathione (GSNO) and copper oxide nanoparticles (CuO NPs) against melanoma cells. Individually applied NO donor or metallic oxide nanoparticles have been widely explored against various types of cancer with encouraging results. This is the first report to assess the potential and possible underlying mechanisms of action of PL containing both NO donor and CuO NPs toward cancer cells. We found that PL + GSNO + CuO NPs significantly reduced cell viability and greatly increased the levels of reactive oxygen species. In addition, this novel platform had a huge impact on different organelles, thus triggering cell death by inducing nuclear changes, a loss of mitochondrial membrane potential, and lipid peroxidation. Thus, GSNO and CuO NPs incorporated into PL hydrogels might find important applications in the treatment of skin cancer.

8.
Environ Sci Pollut Res Int ; 30(21): 60168-60179, 2023 May.
Article in English | MEDLINE | ID: mdl-37017842

ABSTRACT

The rise in the global population demands an increasing food supply and methods to boost agricultural production. Pesticides are necessary for agricultural production models, avoiding losses of close to 40%. Nevertheless, the extensive use of pesticides can cause their accumulation in the environment, causing problems for human health, biota, and ecosystems. Thus, new technologies have emerged to remove these wastes efficiently. In recent years, metal and metal oxide nanoparticles (MNPs) have been reported as promising catalysts to degrade pesticides; however, a systematic understanding of their effect on pesticide degradation is still required. Therefore, this study focused on a meta-analysis of articles available in Elsevier's Scopus and Thomas Reuters Web of Science, found by searching for "nanoparticle pesticide" and "pesticide contamination." After passing different filters, the meta-analysis was performed with 408 observations from 94 reviews, which comprise insecticides, herbicides, and fungicides, including organophosphates, organochlorines, carbamates, triazines, and neonicotinoids. Herein, 14 different MNPs (Ag, Ni, Pd, Co3O4, BiOBr, Au, ZnO, Fe, TiO2, Cu, WO3, ZnS, SnO2, and Fe0), improved pesticide degradation, with the highest degradation rates achieved by Ag (85%) and Ni (82.5%). Additionally, the impact of the MNP functionalization, size, and concentration on pesticide degradation was quantified and compared. In general, the degradation rate increased when the MNPs were functionalized (~ 70%) compared to naked (~ 49%). Also, the particle size significantly affected the degradation of pesticides. To our knowledge, this study is the first meta-analysis performed about the impact of MNPs on pesticide degradation, providing an essential scientific basis for future studies.


Subject(s)
Herbicides , Insecticides , Metal Nanoparticles , Pesticides , Humans , Pesticides/analysis , Ecosystem , Insecticides/analysis , Herbicides/analysis , Oxides
9.
Antioxidants (Basel) ; 12(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37107159

ABSTRACT

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using a diverse range of plant species has been extensively reported. Despite the success achieved by biogenic synthesis, there are problems with the control and prediction of the properties of ZnO NPs, due to phytochemical diversity between plant species. In this sense, the main objective of our work was to investigate the effect of the antioxidant activity (AA) of plant extracts on the physicochemical characteristics of ZnO NPs (production yield, chemical composition, polydispersity index (PDI), surface charge (ζ-potential) and average particle size). In order to accomplish this objective, four plant extract with different antioxidant activities were used: Galega officinalis, Buddleja globosa, Eucalyptus globulus, and Aristotelia chilensis. Phytochemical screening, quantitative analysis of phenolic compounds and antioxidant activity determination of the different extracts were carried out. Chemical species such as catechin, malvidin, quercetin, caffeic acid, and ellagic acid were the dominant components, found in the extracts studied. The A. chilensis extract showed the highest value of total phenolic compounds (TPC) and AA, followed by E. globulus, B. globosa and G. officinalis. Zetasizer, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) data show that plant extracts with lower AA leads to a decrease in the yield of ZnO NPs and an increase in the amount of residual organic extract that remains on the particles. The latter caused an increase in the average particle size, PDI and ζ-potential as a consequence of agglomeration and particle coarsening. Our result suggest that it is possible to use the AA as an indicator of the potential reducing capacity of plant extracts. In this way it is possible to guarantee the reproducibility of the synthesis process as well as ensure the formation of ZnO NPs with desired characteristics.

10.
Antibiotics (Basel) ; 12(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36830160

ABSTRACT

Due to the environmental risks of conventional Cu-based fungicides, Cu-loaded chitosan nanoparticles have been developed as nano-pesticides, aiming to protect plants against different diseases. In this sense, the objective was to verify the effects of chitosan nanoparticles containing Cu2+ ions on leaf discs of Coffea arabica cv. IPR 100 infected with Hemileia vastatrix. The treatments were water as a control (CONT), unloaded chitosan nanoparticles (NP), chitosan nanoparticles containing Cu2+ ions (NPCu), and free Cu2+ ions (Cu). Different concentrations of NP (0.25; 0.5; 1 g L-1) and Cu2+ ions (1.25; 2.5; 5 mmol L-1) were tested. The severity of the coffee rust was 42% in the CONT treatment, 22% in NP, and 2% in NPCu and Cu. The treatments protected coffee leaves; however, NPCu stood out for initial stress reduction, decreasing Cu phytotoxicity, promoting photosynthetic activity maintenance, and increasing antioxidant responses, conferring significant protection against coffee rust. At low concentrations (1.25 mmol L-1), NPCu showed higher bioactivity than Cu. These results suggest that Cu-loaded chitosan nanoparticles can induce a more significant plant defense response to the infection of Hemileia vastatrix than conventional Cu, avoiding the toxic effects of high Cu concentrations. Thus, this nanomaterial has great potential to be used as nano-pesticides for disease management.

11.
Antibiotics (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36830248

ABSTRACT

Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.

12.
Antibiotics (Basel) ; 12(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36671379

ABSTRACT

The food industry has been exploring the association of polymers with nanoparticles in packaging production, and active products are essential to increase the shelf life of food and avoid contamination. Our study developed starch-poly (adipate co-terephthalate butyl) films with silver nanoparticles produced with Fusarium oxysporum components (bio-AgNPs), intending to control foodborne pathogens. The bio-AgNPs showed activity against different Salmonella serotypes, including multidrug-resistant Salmonella Saint Paul and Salmonella Enteritidis, with minimum bactericidal concentrations ranging from 4.24 to 16.98 µg/mL. Biodegradable films with bio-AgNPs inhibited the growth of up to 106Salmonella isolates. Silver migration from the films to chicken was analyzed using electrothermal atomic absorption spectrophotometry, and the results showed migration values (12.94 mg/kg and 3.79 mg/kg) above the limits allowed by the European Food Safety Authority (EFSA) (0.05 mg/kg). Thus, it is necessary to improve the technique to avoid the migration of silver to chicken meat, since these concentrations can be harmful.

13.
Int J Pharm ; 630: 122465, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36476664

ABSTRACT

Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.


Subject(s)
Nitric Oxide , Skin Diseases , Humans , Nitric Oxide/pharmacology , Biocompatible Materials , Skin , Wound Healing , Skin Diseases/drug therapy
14.
Plants (Basel) ; 11(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501285

ABSTRACT

The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg-1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress.

15.
Nanomaterials (Basel) ; 12(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807973

ABSTRACT

The antimicrobial activity of metal nanoparticles obtained by biogenic routes has been extensively reported. However, their combined use with other antimicrobial formulations, such as essential oils, remains scarcely explored. In this work, a manganese-ferrite/silver nanocomposite (MnFe2O4/Ag-NC) was synthesized in a two-step procedure: first, MnFe2O4 nanoparticles were produced by a coprecipitation method, followed by in situ biogenic reduction of silver ions using Galega officinalis. MnFe2O4/Ag-NC was characterized using transmission electron microscopy (TEM), scanning electron microscopy equipped with an energy dispersive X-ray analyzer (SEM-EDX), and a vibrating sample magnetometer (VSM-SQUID). The antibacterial activity if MnFe2O4/Ag-NC was evaluated against Pseudomonas syringae by determining its minimum inhibitory concentration (MIC) in the presence of two essential oils: eucalyptus oil (EO) and garlic oil (GO). The fractional inhibitory concentration (FIC) was also calculated to determine the interaction between MnFe2O4/Ag-NC and each oil. The MIC of MnFe2O4/Ag-NC was eightfold reduced with the two essential oils (from 20 to 2.5 µg mL-1). However, the interaction with EO was synergistic (FIC: 0.5), whereas the interaction with GO was additive (FIC: 0.75). Additionally, a time-kill curve analysis was performed, wherein the MIC of the combination of MnFe2O4/Ag-NC and EO provoked a rapid bactericidal effect, corroborating a strong synergism. These findings suggest that by combining MnFe2O4/Ag-NC with essential oils, the necessary ratio of the nanocomposite to control phytopathogens can be reduced, thus minimizing the environmental release of silver.

16.
Antibiotics (Basel) ; 11(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35625266

ABSTRACT

The biological synthesis of silver nanoparticles (AgNPs) for medical, environmental, and industrial applications is considered an alternative to chemical synthesis methods. Additionally, the reducing, capping, and stabilizing molecules produced by the organisms can play a key role in the further activity of AgNPs. In this work, we evaluated the synthesis of AgNPs by four molecular weight fractions (S1: <10 kDa, S2: 10 to 30 kDa, S3: 30 to 50 kDa, and S4: >50 kDa) of mycelia-free aqueous extract produced by the white-rot fungus Stereum hirsutum and their effect on the antimicrobial activity against Pseudomonas syringae and photocatalytic decolorization of nine synthetic dyes exposed to sunlight radiation. All synthesis assay fractions showed the characteristic surface plasmon resonance (SPR) with 403 to 421 nm peaks. TEM analysis of synthesized AgNPs showed different sizes: the whole mycelia-free extracts S0 (13.8 nm), S1 (9.06 nm), S2 (10.47 nm), S3 (22.48 nm), and S4 (16.92 nm) fractions. The results of disk diffusion assays showed an inverse relation between antimicrobial activity and the molecular weight of compounds present in the mycelia-free aqueous extract used to synthesize AgNPs. The AgNPs synthesized by S0 (14.3 mm) and S1(14.2 mm) generated the highest inhibition diameter of P. syringae growth. By contrast, in the photocatalytic assays, the AgNPs synthesized by the S2 fraction showed the highest discoloration in all the dyes tested, reaching 100% of the discoloration of basic dyes after 2 h of sunlight exposure. The maximum discoloration observed in reactive and acid dyes was 53.2% and 65.3%, respectively. This differentiation in the antimicrobial and photocatalytic activity of AgNPs could be attributed to the capping effect of the molecules present in the extract fractions. Therefore, the molecular separation of synthesis extract enables the specific activities of the AgNPs to be enhanced.

17.
Mater Sci Eng C Mater Biol Appl ; 135: 112655, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35577690

ABSTRACT

Magnetic bioactive glass-ceramics are biomaterials applied for magnetic hyperthermia in bone cancer treatment, thereby treating the bone tumor besides regenerating the damaged bone. However, combining high bioactivity and high saturation magnetization remains a challenge since the thermal treatment step employed to grow magnetic phases is also related to loss of bioactivity. Here, we propose a new nanocomposite made of superparamagnetic iron oxide nanoparticles (SPIONs) dispersed in a sol-gel-derived bioactive glass matrix, which does not need any thermal treatment for crystallization of magnetic phases. The scanning and transmission electron microscopies, X-ray diffraction, and dynamic light scattering results confirm that the SPIONs are actually embedded in a nanosized glass matrix, thus forming a nanocomposite. Magnetic and calorimetric characterizations evidence their proper behavior for hyperthermia applications, besides evidencing inter-magnetic nanoparticle interactions within the nanocomposite. Bioactivity and in vitro characterizations show that such nanocomposites exhibit apatite-forming properties similar to the highly bioactive parent glass, besides being osteoinductive. This methodology is a new alternative to produce magnetic bioactive materials to which the magnetic properties only rely on the quality of the SPIONs used in the synthesis. Thereby, these nanocomposites can be recognized as a new class of bioactive materials for applications in bone cancer treatment by hyperthermia.


Subject(s)
Hyperthermia, Induced , Nanocomposites , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Glass/chemistry , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Nanocomposites/chemistry
18.
New Phytol ; 234(4): 1119-1125, 2022 05.
Article in English | MEDLINE | ID: mdl-35266146

ABSTRACT

Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.g. S-nitrosothiol-containing chitosan nanoparticles) have many beneficial physicochemical and biochemical properties compared to non-encapsulated NO donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects both in animal and human systems. The authors believe, and would like to emphasize, that new trends and technologies are essential for advancing plant NO research and nanotechnology may represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to draw the attention of the scientific community to the potential of NO-releasing nanomaterials in both basic and applied plant research as alternatives to conventional NO donors, providing a brief overview of the current knowledge and identifying future research directions. We also express our opinion about the challenges for the application of nano NO donors, such as the environmental footprint and stakeholder's acceptance of these materials.


Subject(s)
Chitosan , Nitric Oxide , Agriculture , Animals , Biotechnology , Nanotechnology , Plants
19.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638818

ABSTRACT

In nanomedicine, hybrid nanomaterials stand out for providing new insights in both the diagnosis and treatment of several diseases. Once administered, engineered nanoparticles (NPs) interact with biological molecules, and the nature of this interaction might directly interfere with the biological fate and action of the NPs. In this work, we synthesized a hybrid magnetic nanostructure, with antibacterial and antitumoral potential applications, composed of a magnetite core covered by silver NPs, and coated with a modified chitosan polymer. As magnetite NPs readily oxidize to maghemite, we investigated the structural properties of the NPs after addition of the two successive layers using Mössbauer spectroscopy. Then, the structural characteristics of the NPs were correlated to their interaction with albumin, the major blood protein, to evidence the consequences of its binding on NP properties and protein retention. Thermodynamic parameters of the NPs-albumin interaction were determined. We observed that the more stable NPs (coated with modified chitosan) present a lower affinity for albumin in comparison to pure magnetite and magnetite/silver hybrid NPs. Surface properties were key players at the NP-biological interface. To the best of our knowledge, this is the first study that demonstrates a correlation between the structural properties of complex hybrid NPs and their interaction with albumin.


Subject(s)
Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Oxidation-Reduction
20.
Planta ; 254(4): 66, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34491441

ABSTRACT

MAIN CONCLUSION: Advances in nanotechnology make it an important tool for improving agricultural production. Strong evidence supports the role of nanomaterials as nutrients or nanocarriers for the controlled release of fertilizers to improve plant growth. Scientific research shows that nanotechnology applied in plant sciences is smart technology. Excessive application of mineral fertilizers has produced a harmful impact on the ecosystem. Furthermore, the projected increase in the human population by 2050 has led to the search for alternatives to ensure food security. Nanotechnology is a promising strategy to enhance crop productivity while minimizing fertilizer inputs. Nanofertilizers can contribute to the slow and sustainable release of nutrients to improve the efficiency of nutrient use in plants. Nanomaterial properties (i.e., size, morphology and charge) and plant physiology are crucial factors that influence the impact on plant growth. An important body of scientific research highlights the role of carbon nanomaterials, metal nanoparticles and metal oxide nanoparticles to improve plant development through the modulation of physiological and metabolic processes. Modulating nutrient concentrations, photosynthesis processes and antioxidant enzyme activities have led to increases in shoot length, root development, photosynthetic pigments and fruit yield. In parallel, nanocarriers (nanoclays, nanoparticles of hydroxyapatite, mesoporous silica and chitosan) have been shown to be an important tool for the controlled and sustainable release of conventional fertilizers to improve plant nutrition; however, the technical advances in nanofertilizers need to be accompanied by modernization of the regulations and legal frameworks to allow wider commercialization of these elements. Nanofertilizers are a promising strategy to improve plant development and nutrition, but their application in sustainable agriculture remains a great challenge. The present review summarizes the current advance of research into nanofertilizers, and their future prospects.


Subject(s)
Ecosystem , Plant Development , Agriculture , Fertilizers/analysis , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL