Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Immunol ; 215(1): 37-46, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37583293

ABSTRACT

Staphylococcus aureus (SA) and its exotoxins activate eosinophils (Eos) and mast cells (MCs) via CD48, a GPI-anchored receptor belonging to the signaling lymphocytes activation molecules (SLAM) family. 2B4 (CD244), an immuno-regulatory transmembrane receptor also belonging to the SLAM family, is the high-affinity ligand for CD48. 2B4 is expressed on several leukocytes including NK cells, T cells, basophils, monocytes, dendritic cells (DCs), and Eos. In the Eos and MCs crosstalk carried out by physical and soluble interactions (named the 'allergic effector unit', AEU), 2B4-CD48 binding plays a central role. As CD48 and 2B4 share some structural characteristics and SA colonization accompanies most of the allergic diseases, we hypothesized that SA exotoxins (e.g. Staphylococcus enterotoxin B, SEB) can also bind and activate 2B4 and thereby possibly further aggravate inflammation. To check our hypothesis, we used in vitro, in silico, and in vivo methods. By enzyme-linked immunosorbent assay (ELISA), flow cytometry (FC), fluorescence microscopy, and microscale thermophoresis, we have shown that SEB can bind specifically to 2B4. By Eos short- and long-term activation assays, we confirmed the functionality of the SEB-2B4 interaction. Using computational modeling, we identified possible SEB-binding sites on human and mouse 2B4. Finally, in vivo, in an SEB-induced peritonitis model, 2B4-KO mice showed a significant reduction of inflammatory features compared with WT mice. Altogether, the results of this study confirm that 2B4 is an important receptor in SEB-mediated inflammation, and therefore a role is suggested for 2B4 in SA associated inflammatory conditions.


Subject(s)
Hypersensitivity , Staphylococcus aureus , Animals , Humans , Mice , CD48 Antigen/metabolism , Exotoxins , Inflammation , Signaling Lymphocytic Activation Molecule Family , Staphylococcus aureus/metabolism
2.
J Immunol Res ; 2018: 4236263, 2018.
Article in English | MEDLINE | ID: mdl-30306094

ABSTRACT

CD48 is a costimulatory receptor associated with human asthma. We aimed to assess the significance of the soluble form of CD48 (sCD48) in allergic and nonallergic asthma. Volunteer patients completed an asthma and allergy questionnaire, spirometry, methacholine challenge test, a common allergen skin prick test, and a complete blood count. sCD48, IgE, IL5, IL17A, IL33, and IFNγ were quantitated in serum by ELISA. Asthma was defined as positive methacholine challenge test or a 15% increase in FEV1 post bronchodilator in symptomatic individuals. Allergy was defined as positive skin test or IgE levels > 200 IU/l in symptomatic individuals. 137 individuals participated in the study: 82 (60%) were diagnosed with asthma of which 53 (64%) was allergic asthma. sCD48 levels were significantly elevated in patients with nonallergic asthma compared to control and to the allergic asthma cohort (median (IQR) pg/ml, 1487 (1338-1758) vs. 1308 (1070-1581), p < 0.01, and 1336 (1129-1591), p = 0.02, respectively). IL17A, IL33, and IFNγ levels were significantly elevated in allergic and nonallergic asthmatics when compared to control. No correlation was found between sCD48 level and other disease markers. sCD48 is elevated in nonallergic asthma. Additional studies are required for understanding the role of sCD48 in airway disease.


Subject(s)
Asthma/diagnosis , Hypersensitivity/diagnosis , Th2 Cells/immunology , Adolescent , Adult , Asthma/complications , Asthma/immunology , Biomarkers/blood , CD48 Antigen/blood , Child , Cohort Studies , Cytokines/blood , Female , Humans , Hypersensitivity/complications , Hypersensitivity/immunology , Immunity , Immunoglobulin E/blood , Male , Middle Aged , Spirometry , Young Adult
3.
Front Med (Lausanne) ; 4: 103, 2017.
Article in English | MEDLINE | ID: mdl-28791287

ABSTRACT

Human mast cells (MCs) and eosinophils were first described and named by Paul Ehrlich. These cells have distinct myeloid progenitors and differ morphologically, ultrastructurally, immunologically, biochemically, and pharmacologically. However, MCs and eosinophils play a pivotal role in several allergic disorders. In addition, these cells are involved in autoimmune disorders, cardiovascular diseases, and cancer. MCs are distributed throughout all normal human tissues, whereas eosinophils are present only in gastrointestinal tract, secondary lymphoid tissues, and adipose tissue, thymus, mammary gland, and uterus. However, in allergic disorders, MCs and eosinophils can form the "allergic effector unit." Moreover, in several tumors, MCs and eosinophils can be found in close proximity. Therefore, it is likely that MCs have the capacity to modulate eosinophil functions and vice versa. For example, interleukin 5, stem cell factor, histamine, platelet-activating factor (PAF), prostaglandin D2 (PGD2), cysteinyl leukotrienes, and vascular endothelial growth factors (VEGFs), produced by activated MCs, can modulate eosinophil functions through the engagement of specific receptors. In contrast, eosinophil cationic proteins such as eosinophil cationic protein and major basic protein (MBP), nerve growth factor, and VEGFs released by activated eosinophils can modulate MC functions. These bidirectional interactions between MCs and eosinophils might be relevant not only in allergic diseases but also in several inflammatory and neoplastic disorders.

5.
Eur J Pharmacol ; 778: 77-83, 2016 May 05.
Article in English | MEDLINE | ID: mdl-26526347

ABSTRACT

Mast cells are mostly known for their role in allergic diseases although in recent years it has become clear that they have a role in other diseases and in the body's defense against microbes. In most cases, but especially in allergy, eosinophils are present in the tissue within proximity of mast cells. Due to this spatio-temporal correlation we and others have postulated and described a crosstalk between these two cells, mediated via their released mediators and physical interactions, that is able to modulate each other's function and ultimately the outcome of the allergic inflammatory reaction. This review will focus on the functional unit between mast cells and eosinophils that we have named the "Allergic Effector Unit" and specifically highlight its role in allergy.


Subject(s)
Cell Communication , Eosinophils/pathology , Hypersensitivity/immunology , Mast Cells/pathology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...