Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cancer Lett ; 597: 217011, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849011

ABSTRACT

BACKGROUND: Improving survival for patients diagnosed with metastatic disease and overcoming chemoresistance remain significant clinical challenges in treating breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of therapeutically targetable receptors (ER/PR/HER2). TNBC therapy includes a combination of cytotoxic chemotherapies, including microtubule-targeting agents (MTAs) like paclitaxel (taxane class) or eribulin (vinca class); however, there are currently no FDA-approved MTAs that bind to the colchicine-binding site. Approximately 70 % of patients who initially respond to paclitaxel will develop taxane resistance (TxR). We previously reported that an orally bioavailable colchicine-binding site inhibitor (CBSI), VERU-111, inhibits TNBC tumor growth and treats pre-established metastatic disease. To further improve the potency and metabolic stability of VERU-111, we created next-generation derivatives of its scaffold, including 60c. RESULTS: 60c shows improved in vitro potency compared to VERU-111 for taxane-sensitive and TxR TNBC models, and suppress TxR primary tumor growth without gross toxicity. 60c also suppressed the expansion of axillary lymph node metastases existing prior to treatment. Comparative analysis of excised organs for metastasis between 60c and VERU-111 suggested that 60c has unique anti-metastatic tropism. 60c completely suppressed metastases to the spleen and was more potent to reduce metastatic burden in the leg bones and kidney. In contrast, VERU-111 preferentially inhibited liver metastases and lung metastasis repression was similar. Together, these results position 60c as an additional promising CBSI for TNBC therapy, particularly for patients with TxR disease.

2.
Endocrinology ; 164(7)2023 06 06.
Article in English | MEDLINE | ID: mdl-37224504

ABSTRACT

Corticosteroids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and are routinely prescribed to breast cancer patients undergoing chemotherapy treatment to alleviate side effects. Triple-negative breast cancers (TNBCs) account for 15% to 20% of diagnoses and lack expression of estrogen and progesterone receptors as well as amplified HER2, but they often express high GR levels. GR is a mediator of TNBC progression to advanced metastatic disease; however, the mechanisms underpinning this transition to more aggressive behavior remain elusive. We previously showed that tissue/cellular stress (hypoxia, chemotherapies) as well as factors in the tumor microenvironment (transforming growth factor ß [TGF-ß], hepatocyte growth factor [HGF]) activate p38 mitogen-activated protein kinase (MAPK), which phosphorylates GR on Ser134. In the absence of ligand, pSer134-GR further upregulates genes important for responses to cellular stress, including key components of the p38 MAPK pathway. Herein, we show that pSer134-GR is required for TNBC metastatic colonization to the lungs of female mice. To understand the mechanisms of pSer134-GR action in the presence of GR agonists, we examined glucocorticoid-driven transcriptomes in CRISPR knock-in models of TNBC cells expressing wild-type or phospho-mutant (S134A) GR. We identified dexamethasone- and pSer134-GR-dependent regulation of specific gene sets controlling TNBC migration (NEDD9, CSF1, RUNX3) and metabolic adaptation (PDK4, PGK1, PFKFB4). TNBC cells harboring S134A-GR displayed metabolic reprogramming that was phenocopied by pyruvate dehydrogenase kinase 4 (PDK4) knockdown. PDK4 knockdown or chemical inhibition also blocked cancer cell migration. Our results reveal a convergence of GR agonists (ie, host stress) with cellular stress signaling whereby pSer134-GR critically regulates TNBC metabolism, an exploitable target for the treatment of this deadly disease.


Subject(s)
Receptors, Glucocorticoid , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Cell Movement , Phosphofructokinase-2/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment
4.
Cancers (Basel) ; 14(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36358755

ABSTRACT

HER2+ breast cancer accounts for 15% of all breast cancer cases. Current frontline therapy for HER2+ metastatic breast cancer relies on targeted antibodies, trastuzumab and pertuzumab, combined with microtubule inhibitors in the taxane class (paclitaxel or docetaxel). It is well known that the clinical efficacy of taxanes is limited by the development of chemoresistance and hematological and neurotoxicities. The colchicine-binding site inhibitors (CBSIs) are a class of promising alternative agents to taxane therapy. Sabizabulin (formerly known as VERU-111) is a potent CBSI that overcomes P-gp-mediated taxane resistance, is orally bioavailable, and inhibits tumor growth and distant metastasis in triple negative breast cancer (TNBC). Herein, we demonstrate the efficacy of sabizabulin in HER2+ breast cancer. In vitro, sabizabulin inhibits the proliferation of HER2+ breast cancer cell lines with low nanomolar IC50 values, inhibits clonogenicity, and induces apoptosis in a concentration-dependent manner. In vivo, sabizabulin inhibits breast tumor growth in the BT474 (ER+/PR+/HER2+) xenograft model and a HER2+ (ER-/PR-) metastatic patient-derived xenograft (PDX) model, HCI-12. We demonstrate that sabizabulin is a promising alternative agent to target tubulin in HER2+ breast cancer with similar anti-metastatic efficacy to paclitaxel, but with the advantage of oral bioavailability and lower toxicity than taxanes.

5.
Mol Cancer Ther ; 21(7): 1103-1114, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35499388

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer. Unlike other subtypes of breast cancer, TNBC lacks hormone and growth factor receptor targets. Colchicine-binding site inhibitors (CBSI) targeting tubulin have been recognized as attractive agents for cancer therapy, but there are no CBSI drugs currently FDA approved. CH-2-77 has been reported to have potent antiproliferative activity against a panel of cancer cells in vitro and efficacious antitumor effects on melanoma xenografts, yet, its anticancer activity specifically against TNBC is unknown. Herein, we demonstrate that CH-2-77 inhibits the proliferation of both paclitaxel-sensitive and paclitaxel-resistant TNBC cells with an average IC50 of 3 nmol/L. CH-2-77 also efficiently disrupts the microtubule assembly, inhibits the migration and invasion of TNBC cells, and induces G2-M cell-cycle arrest. The increased number of apoptotic cells and the pattern of expression of apoptosis-related proteins in treated MDA-MB-231 cells suggest that CH-2-77 induces cell apoptosis through the intrinsic apoptotic pathway. In vivo, CH-2-77 shows acceptable overall pharmacokinetics and strongly suppresses the growth of orthotopic MDA-MB-231 xenografts without gross cumulative toxicities when administered 5 times a week. The in vivo efficacy of CH-2-77 (20 mg/kg) is comparable with that of CA4P (28 mg/kg), a CBSI that went through clinical trials. Importantly, CH-2-77 prevents lung metastasis originating from the mammary fat pad in a dose-dependent manner. Our data demonstrate that CH-2-77 is a promising new generation of tubulin inhibitors that inhibit the growth and metastasis of TNBC, and it is worthy of further development as an anticancer agent.


Subject(s)
Triple Negative Breast Neoplasms , Apoptosis , Binding Sites , Cell Line, Tumor , Cell Proliferation , Colchicine/pharmacology , Colchicine/therapeutic use , Humans , Paclitaxel/pharmacology , Triple Negative Breast Neoplasms/pathology , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
6.
J Med Chem ; 64(16): 12049-12074, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34378386

ABSTRACT

We previously reported a potent tubulin inhibitor CH-2-77. In this study, we optimized the structure of CH-2-77 by blocking metabolically labile sites and synthesized a series of CH-2-77 analogues. Two compounds, 40a and 60c, preserved the potency while improving the metabolic stability over CH-2-77 by 3- to 4-fold (46.8 and 29.4 vs 10.8 min in human microsomes). We determined the high-resolution X-ray crystal structures of 40a (resolution 2.3 Å) and 60c (resolution 2.6 Å) in complex with tubulin and confirmed their direct binding at the colchicine-binding site. In vitro, 60c maintained its mode of action by inhibiting tubulin polymerization and was effective against P-glycoprotein-mediated multiple drug resistance and taxol resistance. In vivo, 60c exhibited a strong inhibitory effect on tumor growth and metastasis in a taxol-resistant A375/TxR xenograft model without obvious toxicity. Collectively, this work showed that 60c is a promising lead compound for further development as a potential anticancer agent.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Pyridines/therapeutic use , Tubulin Modulators/therapeutic use , Tubulin/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Drug Stability , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Male , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/metabolism , Molecular Structure , Neoplasm Metastasis/prevention & control , Pyridines/chemical synthesis , Pyridines/metabolism , Pyridines/pharmacokinetics , Structure-Activity Relationship , Tubulin/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacokinetics , Xenograft Model Antitumor Assays
7.
Breast Cancer Res Treat ; 189(1): 63-80, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216317

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are recruited to the tumor microenvironment (TME) and are critical drivers of breast cancer (BC) malignancy. Circulating tumor cells (CTCs) travel through hematogenous routes to establish metastases. CTCs circulate both individually and, more rarely, in clusters with other cell types. Clusters of CTCs have higher metastatic potential than single CTCs. Previously, we identified circulating CAFs (cCAFs) in patients with BC and found that while healthy donors had no CTCs or cCAFs, both were present in most Stage IV patients. cCAFs circulate individually, as cCAF-cCAF homotypic clusters, and in heterotypic clusters with CTCs. METHODS: In this study, we evaluate CTCs, cCAFs, and heterotypic cCAF-CTC clusters in patients with stage I-IV BC. We evaluate the association of heterotypic clusters with BC disease progression and metastasis in a spontaneous mouse model. Using previously established primary BC and CAF cell lines, we examine the metastatic propensity of heterotypic cCAF-CTC clusters in orthotopic and tail vein xenograft mouse models of BC. Using an in vitro clustering assay, we determine factors that may be involved in clustering between CAF and BC cells. RESULTS: We report that the dissemination of CTCs, cCAFs, and clusters is an early event in BC progression, and we find these clusters in all clinical stages of BC. Furthermore, cCAFs-CTC heterotypic clusters have a higher metastatic potential than homotypic CTC clusters in vivo. We also demonstrate that the adhesion and stemness marker CD44, found on a subset of CTCs and CAF cells, is  involved in heterotypic clustering of these cells. CONCLUSION: We identify a novel subset of circulating tumor cell clusters that are enriched with stromal CAF cells in BC patient blood and preclinical mouse models of BC metastasis. Our data suggest that clustering of CTCs with cCAFs augments their metastatic potential and that CD44 might be an important mediator of heterotypic clustering of cCAFs and BC cells.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Neoplastic Cells, Circulating , Animals , Biomarkers, Tumor , Cancer-Associated Fibroblasts/pathology , Cell Count , Cluster Analysis , Female , Humans , Mice , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment
9.
Mol Cancer Res ; 19(2): 329-345, 2021 02.
Article in English | MEDLINE | ID: mdl-33172975

ABSTRACT

Protein tyrosine kinase 6 (PTK6; also called Brk) is overexpressed in 86% of patients with breast cancer; high PTK6 expression predicts poor outcome. We reported PTK6 induction by HIF/GR complexes in response to either cellular or host stress. However, PTK6-driven signaling events in the context of triple-negative breast cancer (TNBC) remain undefined. In a mouse model of TNBC, manipulation of PTK6 levels (i.e., via knock-out or add-back) had little effect on primary tumor volume, but altered lung metastasis. To delineate the mechanisms of PTK6 downstream signaling, we created kinase-dead (KM) and kinase-intact domain structure mutants of PTK6 via in-frame deletions of the N-terminal SH3 or SH2 domains. While the PTK6 kinase domain contributed to soft-agar colony formation, PTK6 kinase activity was entirely dispensable for cell migration. Specifically, TNBC models expressing a PTK6 variant lacking the SH2 domain (SH2-del PTK6) were unresponsive to growth factor-stimulated cell motility relative to SH3-del, KM, or wild-type PTK6 controls. Reverse-phase protein array revealed that while intact PTK6 mediates spheroid formation via p38 MAPK signaling, the SH2 domain of PTK6 limits this biology, and instead mediates TNBC cell motility via activation of the RhoA and/or AhR signaling pathways. Inhibition of RhoA and/or AhR blocked TNBC cell migration as well as the branching/invasive morphology of PTK6+/AhR+ primary breast tumor tissue organoids. Inhibition of RhoA also enhanced paclitaxel cytotoxicity in TNBC cells, including in a taxane-refractory TNBC model. IMPLICATIONS: The SH2-domain of PTK6 is a potent effector of advanced cancer phenotypes in TNBC via RhoA and AhR, identified herein as novel therapeutic targets in PTK6+ breast tumors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Triple Negative Breast Neoplasms/genetics , rhoA GTP-Binding Protein/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Mice , Phenotype , Rats , Signal Transduction
10.
Cancers (Basel) ; 14(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008190

ABSTRACT

The oxygen-responsive hypoxia inducible factor (HIF)-1 promotes several steps of the metastatic cascade. A hypoxic gene signature is enriched in triple-negative breast cancers (TNBCs) and is correlated with poor patient survival. Inhibiting the HIF transcription factors with small molecules is challenging; therefore, we sought to identify genes downstream of HIF-1 that could be targeted to block invasion and metastasis. Creatine kinase brain isoform (CKB) was identified as a highly differentially expressed gene in a screen of HIF-1 wild type and knockout mammary tumor cells derived from a transgenic model of metastatic breast cancer. CKB is a cytosolic enzyme that reversibly catalyzes the phosphorylation of creatine, generating phosphocreatine (PCr) in the forward reaction, and regenerating ATP in the reverse reaction. Creatine kinase activity is inhibited by the creatine analog cyclocreatine (cCr). Loss- and gain-of-function genetic approaches were used in combination with cCr therapy to define the contribution of CKB expression or creatine kinase activity to cell proliferation, migration, invasion, and metastasis in ER-negative breast cancers. CKB was necessary for cell invasion in vitro and strongly promoted tumor growth and lung metastasis in vivo. Similarly, cyclocreatine therapy repressed cell migration, cell invasion, the formation of invadopodia and lung metastasis. Moreover, in common TNBC cell line models, the addition of cCr to conventional cytotoxic chemotherapy agents was either additive or synergistic to repress tumor cell growth.

12.
Mol Cancer Ther ; 19(2): 348-363, 2020 02.
Article in English | MEDLINE | ID: mdl-31645441

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer cases in the United States. TNBC has poorer overall prognosis relative to other molecular subtypes due to rapid onset of drug resistance to conventional chemotherapies and increased risk of visceral metastases. Taxanes like paclitaxel are standard chemotherapies that stabilize microtubules, but their clinical efficacy is often limited by drug resistance and neurotoxicities. We evaluated the preclinical efficacy of a novel, potent, and orally bioavailable tubulin inhibitor, VERU-111, in TNBC models. VERU-111 showed potent cytotoxicity against TNBC cell lines, inducing apoptosis and cell-cycle arrest in a concentration-dependent manner. VERU-111 also efficiently inhibited colony formation, cell migration, and invasion. Orally administered VERU-111 inhibited MDA-MB-231 xenograft growth in a dose-dependent manner, with similar efficacies to paclitaxel, but without acute toxicity. VERU-111 significantly reduced metastases originating from the mammary fat pad into lung, liver, and kidney metastasis in an experimental metastasis model. Moreover, VERU-111, but not paclitaxel, suppressed growth of luciferase-labeled, taxane-resistant, patient-derived metastatic TNBC tumors. In this model, VERU-111 repressed growth of preestablished axillary lymph node metastases and lung, bone, and liver metastases at study endpoint, whereas paclitaxel enhanced liver metastases relative to vehicle controls. Collectively, these studies strongly suggest that VERU-111 is not only a potent inhibitor of aggressive TNBC phenotypes, but it is also efficacious in a taxane-resistant model of metastatic TNBC. Thus, VERU-111 is a promising new generation of tubulin inhibitor for the treatment of TNBC and may be effective in patients who progress on taxanes.Results presented in this study demonstrate the efficacy of VERU-111 in vivo and provide strong rationale for future development of VERU-111 as an effective treatment for metastatic breast cancer.


Subject(s)
Triple Negative Breast Neoplasms/drug therapy , Tubulin Modulators/therapeutic use , Administration, Oral , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Neoplasm Metastasis
13.
Cancers (Basel) ; 11(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861131

ABSTRACT

Triple-negative breast cancers (TNBCs), which lack specific targeted therapy options, evolve into highly chemo-resistant tumors that metastasize to multiple organs simultaneously. We have previously shown that TNBCs maintain an activated WNT10B-driven network that drives metastasis. Pharmacologic inhibition by ICG-001 decreases ß-catenin-mediated proliferation of multiple TNBC cell lines and TNBC patient-derived xenograft (PDX)-derived cell lines. In vitro, ICG-001 was effective in combination with the conventional cytotoxic chemotherapeutics, cisplatin and doxorubicin, to decrease the proliferation of MDA-MB-231 cells. In contrast, in TNBC PDX-derived cells doxorubicin plus ICG-001 was synergistic, while pairing with cisplatin was not as effective. Mechanistically, cytotoxicity induced by doxorubicin, but not cisplatin, with ICG-001 was associated with increased cleavage of PARP-1 in the PDX cells only. In vivo, MDA-MB-231 and TNBC PDX orthotopic primary tumors initiated de novo simultaneous multi-organ metastases, including bone metastases. WNT monotherapy blocked multi-organ metastases as measured by luciferase imaging and histology. The loss of expression of the WNT10B/ß-catenin direct targets HMGA2, EZH2, AXIN2, MYC, PCNA, CCND1, transcriptionally active ß-catenin, SNAIL and vimentin both in vitro and in vivo in the primary tumors mechanistically explains loss of multi-organ metastases. WNT monotherapy induced VEGFA expression in both tumor model systems, whereas increased CD31 was observed only in the MDA-MB-231 tumors. Moreover, WNT-inhibition sensitized the anticancer response of the TNBC PDX model to doxorubicin, preventing simultaneous metastases to the liver and ovaries, as well as to bone. Our data demonstrate that WNT-inhibition sensitizes TNBC to anthracyclines and treats multi-organ metastases of TNBC.

14.
Mol Pharmacol ; 96(1): 73-89, 2019 07.
Article in English | MEDLINE | ID: mdl-31043459

ABSTRACT

Interfering with microtubule dynamics is a well-established strategy in cancer treatment; however, many microtubule-targeting agents are associated with drug resistance and adverse effects. Substantial evidence points to ATP-binding cassette (ABC) transporters as critical players in the development of resistance. Herein, we demonstrate the efficacy of DJ95 (2-(1H-indol-6-yl)-4-(3,4,5-trimethoxyphenyl)-1H-imidazo[4,5-c]pyridine), a novel tubulin inhibitor, in a variety of cancer cell lines, including malignant melanomas, drug-selected resistant cell lines, specific ABC transporter-overexpressing cell lines, and the National Cancer Institute 60 cell line panel. DJ95 treatment inhibited cancer cell migration, caused morphologic changes to the microtubule network foundation, and severely disrupted mitotic spindle formation of mitotic cells. The high-resolution crystal structure of DJ95 in complex with tubulin protein and the detailed molecular interactions confirmed its direct binding to the colchicine site. In vitro pharmacological screening of DJ95 using SafetyScreen44 (Eurofins Cerep-Panlabs) revealed no significant off-target interactions, and pharmacokinetic analysis showed that DJ95 was maintained at therapeutically relevant plasma concentrations for up to 24 hours in mice. In an A375 xenograft model in nude mice, DJ95 inhibited tumor growth and disrupted tumor vasculature in xenograft tumors. These results demonstrate that DJ95 is potent against a variety of cell lines, demonstrated greater potency to ABC transporter-overexpressing cell lines than existing tubulin inhibitors, directly targets the colchicine binding domain, exhibits significant antitumor efficacy, and demonstrates vascular-disrupting properties. Collectively, these data suggest that DJ95 has great potential as a cancer therapeutic, particularly for multidrug resistance phenotypes, and warrants further development. SIGNIFICANCE STATEMENT: Paclitaxel is a widely used tubulin inhibitor for cancer therapy, but its clinical efficacy is often limited by the development of multidrug resistance. In this study, we reported the preclinical characterization of a new tubulin inhibitor DJ95, and demonstrated its abilities to overcome paclitaxel resistance, disrupt tumor vasculature, and exhibit significant antitumor efficacy.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Small Molecule Libraries/administration & dosage , Tubulin Modulators/administration & dosage , Tubulin/chemistry , ATP-Binding Cassette Transporters/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Colchicine/metabolism , Crystallography, X-Ray , Female , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Imidazoles/administration & dosage , Imidazoles/chemistry , Imidazoles/pharmacology , Male , Melanoma/metabolism , Mice , Mice, Nude , Pyridines/administration & dosage , Pyridines/chemistry , Pyridines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
15.
Cancer Res ; 79(5): 982-993, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30563890

ABSTRACT

Triple-negative breast cancer (TNBC) commonly develops resistance to chemotherapy, yet markers predictive of chemoresistance in this disease are lacking. Here, we define WNT10B-dependent biomarkers for ß-CATENIN/HMGA2/EZH2 signaling predictive of reduced relapse-free survival. Concordant expression of HMGA2 and EZH2 proteins is observed in MMTV-Wnt10bLacZ transgenic mice during metastasis, and Hmga2 haploinsufficiency decreased EZH2 protein expression, repressing lung metastasis. A novel autoregulatory loop interdependent on HMGA2 and EZH2 expression is essential for ß-CATENIN/TCF-4/LEF-1 transcription. Mechanistically, both HMGA2 and EZH2 displaced Groucho/TLE1 from TCF-4 and served as gatekeepers for K49 acetylation on ß-CATENIN, which is essential for transcription. In addition, we discovered that HMGA2-EZH2 interacts with the PRC2 complex. Absence of HMGA2 or EZH2 expression or chemical inhibition of Wnt signaling in a chemoresistant patient-derived xenograft (PDX) model of TNBC abolished visceral metastasis, repressing AXIN2, MYC, EZH2, and HMGA2 expression in vivo. Combinatorial therapy of a WNT inhibitor with doxorubicin synergistically activated apoptosis in vitro, resensitized PDX-derived cells to doxorubicin, and repressed lung metastasis in vivo. We propose that targeting the WNT10B biomarker network will provide improved outcomes for TNBC. SIGNIFICANCE: These findings reveal targeting the WNT signaling pathway as a potential therapeutic strategy in triple-negative breast cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/5/982/F1.large.jpg.


Subject(s)
Proto-Oncogene Proteins/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Wnt Proteins/metabolism , Acetylation , Alleles , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Drug Synergism , Enhancer of Zeste Homolog 2 Protein/biosynthesis , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , HMGA2 Protein/biosynthesis , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Humans , Lymphoid Enhancer-Binding Factor 1 , Mice , Mice, Transgenic , Middle Aged , Neoplasm Metastasis , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacology , Survival Rate , Transcription Factor 4 , Triple Negative Breast Neoplasms/genetics , beta Catenin/metabolism
16.
Cancer Res ; 79(6): 1054-1068, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30593524

ABSTRACT

Osteosarcoma is a malignant tumor in the bone, which originates from normal osteoblasts or osteoblast precursors. Normal osteoblasts express estrogen receptor alpha (ERα); however, osteosarcomas do not express ERα due to promoter DNA methylation. Here we show that treatment of 143B osteosarcoma cells with decitabine (DAC, 5-Aza-2'-deoxycytidine) induces expression of ERα and leads to decreased proliferation and concurrent induction of osteoblast differentiation. DAC exposure reduced protein expression of metastasis-associated markers VIMENTIN, SLUG, ZEB1, and MMP9, with a concurrent decrease in mRNA expression of known stem cell markers SOX2, OCT4, and NANOG. Treatment with 17ß-estradiol (E2) synergized with DAC to reduce proliferation. Overexpression of ERα inhibited proliferation and induced osteoblast differentiation, whereas knockout of ERα by CRISPR/Cas9 prevented the effects of DAC. In an orthotopic model of osteosarcoma, DAC inhibited tumor growth and metastasis of 143B cells injected into the tibia of NOD SCID gamma mice. Furthermore, ERα overexpression reduced tumor growth and metastasis, and ERα knockout prevented the effects of DAC in vivo. Together, these experiments provide preclinical evidence that the FDA-approved DNA methylation inhibitor DAC may be repurposed to treat patients with osteosarcoma based on its efficacy to decrease proliferation, to induce osteoblast differentiation, and to reduce metastasis to visceral organs.Significance: These findings describe the effects of DNA methyltransferase inhibition on ERα and its potential role as a tumor suppressor in osteosarcoma.See related commentary by Roberts, p. 1034 See related article by El Ayachi and colleagues; Cancer Res 79(5);982-93.


Subject(s)
DNA Methylation , Decitabine/pharmacology , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Osteosarcoma/drug therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Proliferation , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Mice , Mice, Inbred NOD , Mice, SCID , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Prognosis , Promoter Regions, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Breast Cancer Res ; 20(1): 117, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30285805

ABSTRACT

BACKGROUND: Metastasis is responsible for a significant number of breast cancer-related deaths. Hypoxia, a primary driving force of cancer metastasis, induces the expression of BHLHE40, a transcription regulator. This study aimed to elucidate the function of BHLHE40 in the metastatic process of breast cancer cells. METHODS: To define the role of BHLHE40 in breast cancer, BHLHE40 expression was knocked down by a lentiviral construct expressing a short hairpin RNA against BHLHE40 or knocked out by the CRISPR/Cas9 editing system. Orthotopic xenograft and experimental metastasis (tail vein injection) mouse models were used to analyze the role of BHLHE40 in lung metastasis of breast cancer. Global gene expression analysis and public database mining were performed to identify signaling pathways regulated by BHLHE40 in breast cancer. The action mechanism of BHLHE40 was examined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (CoIP), exosome analysis, and cell-based assays for metastatic potential. RESULTS: BHLHE40 knockdown significantly reduced primary tumor growth and lung metastasis in orthotopic xenograft and experimental metastasis models of breast cancer. Gene expression analysis implicated a role of BHLHE40 in transcriptional activation of heparin-binding epidermal growth factor (HBEGF). ChIP and CoIP assays revealed that BHLHE40 induces HBEGF transcription by blocking DNA binding of histone deacetylases (HDAC)1 and HDAC2. Cell-based assays showed that HBEGF is secreted through exosomes and acts to promote cell survival and migration. Public databases provided evidence linking high expression of BHLHE40 and HBEGF to poor prognosis of triple-negative breast cancer. CONCLUSION: This study reveals a novel role of BHLHE40 in promoting tumor cell survival and migration by regulating HBEGF secretion.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Heparin-binding EGF-like Growth Factor/genetics , Homeodomain Proteins/genetics , Lung Neoplasms/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Heparin-binding EGF-like Growth Factor/metabolism , Homeodomain Proteins/metabolism , Humans , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , MCF-7 Cells , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Phenotype , RNA Interference , RNAi Therapeutics/methods , Xenograft Model Antitumor Assays/methods
18.
Mol Cancer Res ; 16(11): 1761-1772, 2018 11.
Article in English | MEDLINE | ID: mdl-29991529

ABSTRACT

The metastatic cascade is a complex process that requires cancer cells to survive despite conditions of high physiologic stress. Previously, cooperation between the glucocorticoid receptor (GR) and hypoxia-inducible factors (HIF) was reported as a point of convergence for host and cellular stress signaling. These studies indicated p38 MAPK-dependent phosphorylation of GR on Ser134 and subsequent p-GR/HIF-dependent induction of breast tumor kinase (PTK6/Brk), as a mediator of aggressive cancer phenotypes. Herein, p-Ser134 GR was quantified in human primary breast tumors (n = 281) and the levels of p-GR were increased in triple-negative breast cancer (TNBC) relative to luminal breast cancer. Brk was robustly induced following exposure of TNBC model systems to chemotherapeutic agents (Taxol or 5-fluorouracil) and growth in suspension [ultra-low attachment (ULA)]. Notably, both Taxol and ULA resulted in upregulation of the Aryl hydrocarbon receptor (AhR), a known mediator of cancer prosurvival phenotypes. Mechanistically, AhR and GR copurified and following chemotherapy and ULA, these factors assembled at the Brk promoter and induced Brk expression in an HIF-dependent manner. Furthermore, Brk expression was upregulated in Taxol-resistant breast cancer (MCF-7) models. Ultimately, Brk was critical for TNBC cell proliferation and survival during Taxol treatment and in the context of ULA as well as for basal cancer cell migration, acquired biological phenotypes that enable cancer cells to successfully complete the metastatic cascade. These studies nominate AhR as a p-GR binding partner and reveal ways to target epigenetic events such as adaptive and stress-induced acquisition of cancer skill sets required for metastatic cancer spread.Implication: Breast cancer cells enlist intracellular stress response pathways that evade chemotherapy by increasing cancer cell survival and promoting migratory phenotypes. Mol Cancer Res; 16(11); 1761-72. ©2018 AACR.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1/metabolism , Neoplasm Proteins/metabolism , Paclitaxel/pharmacology , Protein-Tyrosine Kinases/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Glucocorticoid/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Female , Gene Expression , Humans , MCF-7 Cells , Phenotype , Phosphorylation , Signal Transduction/drug effects , Transfection , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
20.
Methods Mol Biol ; 1742: 67-79, 2018.
Article in English | MEDLINE | ID: mdl-29330791

ABSTRACT

Chromatin immunoprecipitation (ChIP) is a powerful method to determine whether a protein of interest binds to specific regulatory elements of the genome. Herein, we outline protocols optimized to detect binding of Hypoxia-Inducible Factor (HIF)-1α or HIF-2α to putative hypoxia response elements (HREs) within HIF target genes expressed in breast tumor epithelial cells.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Breast Neoplasms/genetics , Chromatin Immunoprecipitation/methods , DNA/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Binding Sites , Breast Neoplasms/metabolism , DNA/chemistry , Female , Gene Knockout Techniques , Gene Regulatory Networks , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MCF-7 Cells , Mice , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL