Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Infect Dis Ther ; 11(5): 1999-2015, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058990

ABSTRACT

INTRODUCTION: AOD01 is a novel, fully human immunoglobulin (Ig) G1 neutralizing monoclonal antibody that was developed as a therapeutic against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). This first-in-human study assessed safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of AOD01 in healthy volunteers. METHODS: Intravenous doses of AOD01 were evaluated in escalating cohorts [four single-dose cohorts (2, 5, 10, and 20 mg/kg) and one two-dose cohort (two doses of 20 mg/kg, 24 h apart)]. RESULTS: Twenty-three subjects were randomized to receive AOD01 or a placebo in blinded fashion. A total of 34 treatment-emergent adverse events (TEAEs) were reported; all were mild in severity. Related events (headache and diarrhea) were reported in one subject each. No event of infusion reactions, serious adverse event (SAE), or discontinuation due to AE were reported. The changes in laboratory parameters, vital signs, and electrocardiograms were minimal. Dose-related exposure was seen from doses 2 to 20 mg/kg as confirmed by Cmax and AUC0-tlast. The median Tmax was 1.5-3 h. Clearance was dose independent. Study results revealed long half-lives (163-465 h). Antidrug antibodies (ADA) to AOD01 were not detected among subjects, except in one subject of the two-dose cohort on day 92. Sustained ex vivo neutralization of SARS-CoV-2 was recorded until day 29 with single doses from 2 to 20 mg/kg and until day 43 with two doses of 20 mg/kg. CONCLUSIONS: AOD01 was safe and well tolerated, demonstrated dose-related PK, non-immunogenic status, and sustained ex vivo neutralization of SARS-CoV-2 after single intravenous dose ranging from 2 to 20 mg/kg and two doses of 20 mg/kg and show good potential for treatment of SARS-CoV-2 infection. (Health Sciences Authority identifier number CTA2000119).

2.
ACS Nano ; 16(9): 15141-15154, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35977379

ABSTRACT

Nanomedicine-based and unmodified drug interventions to address COVID-19 have evolved over the course of the pandemic as more information is gleaned and virus variants continue to emerge. For example, some early therapies (e.g., antibodies) have experienced markedly decreased efficacy. Due to a growing concern of future drug resistant variants, current drug development strategies are seeking to find effective drug combinations. In this study, we used IDentif.AI, an artificial intelligence-derived platform, to investigate the drug-drug and drug-dose interaction space of six promising experimental or currently deployed therapies at various concentrations: EIDD-1931, YH-53, nirmatrelvir, AT-511, favipiravir, and auranofin. The drugs were tested in vitro against a live B.1.1.529 (Omicron) virus first in monotherapy and then in 50 strategic combinations designed to interrogate the interaction space of 729 possible combinations. Key findings and interactions were then further explored and validated in an additional experimental round using an expanded concentration range. Overall, we found that few of the tested drugs showed moderate efficacy as monotherapies in the actionable concentration range, but combinatorial drug testing revealed significant dose-dependent drug-drug interactions, specifically between EIDD-1931 and YH-53, as well as nirmatrelvir and YH-53. Checkerboard validation analysis confirmed these synergistic interactions and also identified an interaction between EIDD-1931 and favipiravir in an expanded range. Based on the platform nature of IDentif.AI, these findings may support further explorations of the dose-dependent drug interactions between different drug classes in further pre-clinical and clinical trials as possible combinatorial therapies consisting of unmodified and nanomedicine-enabled drugs, to combat current and future COVID-19 strains and other emerging pathogens.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Amides , Artificial Intelligence , Auranofin , Guanosine Monophosphate/analogs & derivatives , Humans , Phosphoramides , Pyrazines
3.
J Virol ; 96(13): e0045522, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35727030

ABSTRACT

A human monoclonal antibody panel (PD4, PD5, PD7, SC23, and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2-infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 spike (S) protein, only PD5, PD7, and SC23 were able to bind to the receptor binding domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localized within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD-binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognized the uncleaved S protein, indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining were demonstrated for each isolate, SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection. IMPORTANCE The SARS-CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS-CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection, and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore, an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS- CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID-19 patients to monitor the RBD in cells infected with SARS-CoV-2 clinical isolates. These immunological reagents specifically recognize the correctly folded RBD and were used to monitor the appearance of the RBD in SARS-CoV-2-infected cells and identified the site where the RBD first appears.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , Humans , Protein Binding , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemical synthesis , Spike Glycoprotein, Coronavirus/metabolism
4.
NPJ Digit Med ; 5(1): 83, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773329

ABSTRACT

IDentif.AI-x, a clinically actionable artificial intelligence platform, was used to rapidly pinpoint and prioritize optimal combination therapies against COVID-19 by pairing a prospective, experimental validation of multi-drug efficacy on a SARS-CoV-2 live virus and Vero E6 assay with a quadratic optimization workflow. A starting pool of 12 candidate drugs developed in collaboration with a community of infectious disease clinicians was first narrowed down to a six-drug pool and then interrogated in 50 combination regimens at three dosing levels per drug, representing 729 possible combinations. IDentif.AI-x revealed EIDD-1931 to be a strong candidate upon which multiple drug combinations can be derived, and pinpointed a number of clinically actionable drug interactions, which were further reconfirmed in SARS-CoV-2 variants B.1.351 (Beta) and B.1.617.2 (Delta). IDentif.AI-x prioritized promising drug combinations for clinical translation and can be immediately adjusted and re-executed with a new pool of promising therapies in an actionable path towards rapidly optimizing combination therapy following pandemic emergence.

5.
PLoS One ; 16(6): e0253487, 2021.
Article in English | MEDLINE | ID: mdl-34161386

ABSTRACT

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , COVID-19/therapy , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/metabolism , COVID-19/immunology , COVID-19/virology , Chemokines/blood , Chemokines/genetics , Chlorocebus aethiops , Convalescence , Cricetinae , Cytokines/blood , Cytokines/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Macaca mulatta , Male , Mice, Transgenic , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Load
6.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33974910

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Subject(s)
Antibodies, Neutralizing/chemistry , Giant Cells/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Binding Sites , CHO Cells , COVID-19/pathology , COVID-19/virology , Cricetinae , Cricetulus , Cryoelectron Microscopy , Giant Cells/cytology , Humans , Membrane Fusion , Peptide Library , Protein Binding , Protein Domains , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
7.
Bioeng Transl Med ; 6(1): e10196, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532594

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to multiple drug repurposing clinical trials that have yielded largely uncertain outcomes. To overcome this challenge, we used IDentif.AI, a platform that pairs experimental validation with artificial intelligence (AI) and digital drug development to rapidly pinpoint unpredictable drug interactions and optimize infectious disease combination therapy design with clinically relevant dosages. IDentif.AI was paired with a 12-drug candidate therapy set representing over 530,000 drug combinations against the SARS-CoV-2 live virus collected from a patient sample. IDentif.AI pinpointed the optimal combination as remdesivir, ritonavir, and lopinavir, which was experimentally validated to mediate a 6.5-fold enhanced efficacy over remdesivir alone. Additionally, it showed hydroxychloroquine and azithromycin to be relatively ineffective. The study was completed within 2 weeks, with a three-order of magnitude reduction in the number of tests needed. IDentif.AI independently mirrored clinical trial outcomes to date without any data from these trials. The robustness of this digital drug development approach paired with in vitro experimentation and AI-driven optimization suggests that IDentif.AI may be clinically actionable toward current and future outbreaks.

8.
bioRxiv ; 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32699850

ABSTRACT

In vitro antibody selection against pathogens from naïve combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection1-4. Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction5. Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naïve human Fab library. Lead antibody 5A6 blocks the receptor binding domain (RBD) of the viral spike from binding to the host receptor angiotensin converting enzyme 2 (ACE2), neutralizes SARS-CoV-2 infection of Vero E6 cells, and reduces viral replication in reconstituted human nasal and bronchial epithelium models. 5A6 has a high occupancy on the viral surface and exerts its neutralization activity via a bivalent binding mode to the tip of two neighbouring RBDs at the ACE2 interaction interface, one in the "up" and the other in the "down" position, explaining its superior neutralization capacity. Furthermore, 5A6 is insensitive to several spike mutations identified in clinical isolates, including the D614G mutant that has become dominant worldwide. Our results suggest that 5A6 could be an effective prophylactic and therapeutic treatment of COVID-19.

9.
Cells ; 9(2)2020 02 15.
Article in English | MEDLINE | ID: mdl-32075271

ABSTRACT

Although the influenza A virus H7N9 subtype circulates within several avian species, it can also infect humans with a severe disease outcome. To better understand the biology of the H7N9 virus we examined the host response to infection in avian and human cells. In this study we used the A/Anhui/1/2013 strain, which was isolated during the first wave of the H7N9 epidemic. The H7N9 virus-infected both human (Airway Epithelial cells) and avian (Chick Embryo Fibroblast) cells, and each infected host transcriptome was examined with bioinformatic tools and compared with other representative avian and human influenza A virus subtypes. The H7N9 virus induced higher expression changes (differentially regulated genes) in both cell lines, with more prominent changes observed in avian cells. Ortholog mapping of differentially expression genes identified significant enriched common and cell-type pathways during H7N9 infections. This data confirmed our previous findings that different influenza A virus subtypes have virus-specific replication characteristics and anti-virus signaling in human and avian cells. In addition, we reported for the first time, the new HIPPO signaling pathway in avian cells, which we hypothesized to play a vital role to maintain the antiviral state of H7N9 virus-infected avian cells. This could explain the absence of disease symptoms in avian species that tested positive for the presence of H7N9 virus.


Subject(s)
Influenza A Virus, H7N9 Subtype/physiology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology , A549 Cells , Animals , Chick Embryo , Chickens , Dogs , Gene Expression , Humans , Influenza in Birds/genetics , Influenza in Birds/metabolism , Influenza in Birds/virology , Influenza, Human/genetics , Influenza, Human/metabolism , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/metabolism , Signal Transduction
10.
J Paediatr Child Health ; 56(3): 400-407, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31618507

ABSTRACT

AIM: A collaborative study was conducted between two Southeast Asian university hospitals to compare the nutritional intervention and growth outcomes and evaluate the extent of post-natal growth faltering (PNGF) among very low birthweight (VLBW) infants. METHODS: Data of all infants admitted during the 2011-2012 period to the two hospitals at Singapore (SG) and Malaysia (MY) were pooled and analysed. RESULTS: Of the 236 infants, SG infants received lower total protein and energy intake than MY infants (2.69 vs. 3.54 g/kg/day and 92.4 vs. 128.9 kcal/kg/day respectively; P < 0.001) in enteral feeds, with Singaporean infants predominantly fed fortified breast milk than Malaysian infants (45/48 vs. 10/41; P < 0.01). The mean weight z-score from birth to 36 weeks corrected age was significantly different (SG,-2.2 (0.9) vs. MY, -1.4 (0.7); P = 0.001). More SG than MY extremely low birthweight (ELBW) infants had severe PNGF >-2 SDS (55 vs. 16%; P = 0.001). The greater use of a diuretic in SG to treat haemodynamically significant patent ductus arteriosus (hsPDA) may have contributed to the higher PNGF rate. Mean growth velocity of at least 15 g/kg/day was attained by VLBW infants only from Day 14 and by ELBW infants only from Day 28 post-natally. Overall, severe PNGF rates (z-score change >-2 SDS at 36 weeks' corrected age) were 28.8 and 36.5% for VLBW and ELBW infants, respectively. CONCLUSIONS: Being very preterm, ELBW with hsPDA and receiving insufficient protein and energy were risk factors for severe PNGF. Increasing protein and energy content, augmenting fortification of breast milk and concentrating feed volumes, especially if there is an hsPDA, may curb severe PNGF among these infants.


Subject(s)
Ductus Arteriosus, Patent , Intensive Care Units, Neonatal , Female , Humans , Infant , Infant, Newborn , Infant, Very Low Birth Weight , Malaysia , Milk, Human , Singapore
11.
Influenza Other Respir Viruses ; 10(1): 27-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26456848

ABSTRACT

In an earlier study on respiratory infections in Singapore military recruits, four influenza C virus (FLUCV) infections were detected out of the 1354 samples collected. All four isolates were detected in 2006, and their whole genome was completely sequenced and analysed. Phylogenetic analysis of the hemagglutinin esterase fusion (HEF) gene revealed that all four Singapore isolates belonged to the C/Japan-Kanagawa/1/76-related lineage. However, the genes of the four FLUCV isolates had origins from several different lineages, and the genome composition resembles that of the C/Japan-Miyagi/9/96-like strains that had been circulating in Japan between 1996 and 2000.


Subject(s)
Gammainfluenzavirus/classification , Gammainfluenzavirus/genetics , Hemagglutinins, Viral/genetics , Influenza, Human/virology , Viral Fusion Proteins/genetics , Animals , Dogs , Genomics , Humans , Influenza, Human/epidemiology , Madin Darby Canine Kidney Cells , Military Personnel , Neglected Diseases/epidemiology , Neglected Diseases/virology , Phylogeny , Singapore
12.
J Immunol ; 193(11): 5420-33, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25339661

ABSTRACT

Although CD4(+) T cell help (Th) is critical for inducing optimal B cell and CD8(+) T cell responses, it remains unclear whether induction of CD4(+) Th responses postinfection are also dependent on CD4(+) T cell help. In this study, we show that activation of adoptively transferred Th cells during primary influenza A virus (IAV) infection enhances both the magnitude and functional breadth of endogenous primary IAV-specific CD4(+) T cell responses. This enhancement was dependent on CD154-CD40-dependent dendritic cell licensing and resulted in a greater recall capacity of IAV-specific CD4(+) and CD8(+) T memory responses after heterologous IAV infection. These data suggest that engaging pre-existing CD4 responses at the time of priming may be a strategy for improving cellular immunity after vaccination.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Dendritic Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/transplantation , CD4-Positive T-Lymphocytes/virology , CD40 Antigens/genetics , CD40 Ligand/genetics , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/virology , Immunologic Memory , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
13.
Immunol Cell Biol ; 92(7): 605-11, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24777309

ABSTRACT

CD40-CD154 (CD40 ligand) interactions are essential for the efficient priming of CD8(+) cytotoxic T lymphocyte (CTL) responses. This is typically via CD4(+)CD154(+) T-cell-dependent 'licensing' of CD40(+) dendritic cells (DCs); however, DCs infected with influenza A virus (IAV) upregulate CD154 expression, thus enabling efficient CTL priming in the absence of CD4(+) T activation. Therefore, it is unclear whether CD4 T cells and DCs have redundant or unique roles in the priming of primary and secondary CTL responses after infection. Here we determine the precise cellular interactions involved in CD40-CD154 regulation of both primary and secondary IAV-specific CTL responses. Infection of both CD40 KO and CD154 KO mice resulted in diminished quantitative and qualitative CTL responses after both primary and secondary infection. Adoptive transfer of CD154(+), but not CD154 KO, CD4 T cells into CD154 KO mice restored both primary and secondary IAV-specific CD8 T-cell responses. These data show that, although CD154 expression on CD4 T cells and other cell types (that is, DCs) may be redundant for the priming of primary CTL responses, CD154 expression by CD4 T cells is required for the priming memory CD8 T cells that are capable of fully responding to secondary infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory , Influenza A virus/immunology , Animals , CD40 Antigens/deficiency , CD40 Antigens/genetics , CD40 Ligand/deficiency , Cell Communication/immunology , Disease Models, Animal , Humans , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
14.
J Leukoc Biol ; 93(1): 145-54, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23108101

ABSTRACT

The helper-dependent pathway of priming CD8(+) T cells involves "licensing" of DCs by CD40L on CD4(+) T cells. The helper-independent ("helpless") pathways elicited by many viruses, including influenza, are less widely understood. We have postulated that CD40L can be up-regulated on DCs by such viruses, and this promotes priming of CD8(+) T cells via CD40. Most studies on costimulation have been performed in the presence of CD4(+) T cells, and so the role of CD40L costimulation under helpless circumstances has not been fully elucidated. Here, we investigated such a role for CD40L using CD40L KO mice. Although the number of influenza-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells, it was markedly decreased in the absence of CD40L. Proliferation (the number of CD44(+)BrdU(+) influenza-specific CD8(+) T cells) in the primary response was diminished in CD40L KO mice at Day 8 but not at Day 5 after infection. MLR studies indicated that CD40L expression on DCs was critical for CD8(+) T cell activation. Adoptive transfer of CD40 KO CD8(+) T cells compared with WT cells confirmed that CD40 on such cells was critical for the generation of primary anti-influenza CD8(+) T cell responses. The late effect also corresponded with the late expression of CD40 by influenza-specific CD8(+) T cells. We suggest that costimulation via CD40L on DCs and CD40 on CD8(+) T cells is important in optimizing primary CD8(+) T cell responses during influenza infection.


Subject(s)
CD40 Antigens/immunology , CD40 Ligand/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae Infections/immunology , Animals , CD40 Antigens/metabolism , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Costimulatory and Inhibitory T-Cell Receptors/immunology , Costimulatory and Inhibitory T-Cell Receptors/metabolism , Enzyme-Linked Immunosorbent Assay , Influenza A virus , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/metabolism
15.
Eur J Immunol ; 42(7): 1744-54, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22585421

ABSTRACT

The importance of costimulation on CD4(+) T cells has been well documented. However, primary CTLs against many infections including influenza can be generated in the absence of CD4(+) T-cell help. The role of costimulation under such "helpless" circumstances is not fully elucidated. Here, we investigated such a role for CD28 using CTLA4Ig transgenic (Tg) mice. To ensure valid comparison across the genotypes, we showed that all mice had similar naïve precursor frequencies and similar peak viral loads. In the absence of help, viral clearance was significantly reduced in CTLA4Ig Tg mice compared with WT mice. CD44(+) BrdU(+) influenza-specific CD8(+) T cells were diminished in CTLA4Ig Tg mice at days 5 and 8 postinfection. Adoptive transfer of ovalbumin-specific transgenic CD8(+) T cells (OT-I)-I cells into WT or CTLA4Ig Tg mice revealed that loss of CD28 costimulation resulted in impairment in OT-I cell division. As shown previously, neither viral clearance nor the generation of influenza-specific CD8(+) T cells was affected by the absence of CD4(+) T cells alone. In contrast, both were markedly impaired by CD28 blockade of "helpless" CD8(+) T cells. We suggest that direct CD28 costimulation of CD8(+) T cells is more critical in their priming during primary influenza infection than previously appreciated.


Subject(s)
CD28 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , CD8-Positive T-Lymphocytes/virology , CTLA-4 Antigen/genetics , Cell Proliferation , Flow Cytometry , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Orthomyxoviridae Infections/virology , Specific Pathogen-Free Organisms , Statistics, Nonparametric
16.
Eur J Immunol ; 41(9): 2585-95, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21660938

ABSTRACT

Resident CD8(+) DCs perform several functions, including cross-presenting antigen and rapidly engulfing the Gram-positive intracellular pathogen Listeria monocytogenes. Little is known about how these functions of CD8(+) DCs are modulated. Here, we show that granulocyte-macrophage CSF (GM-CSF), a cytokine that exists at low levels at steady state but is elevated during infection and inflammation, enhances cross-presentation and rapid uptake of L. monocytogenes by resident CD8(+) DCs. This previously unrecognized functional enhancement of CD8(+) DCs by GM-CSF was independent of promoting DC survival in vitro. Enhancement of these functions by GM-CSF was also marked by CD103 expression on CD8(+) DCs that was strongly regulated by GM-CSF. Our findings not only identify GM-CSF as a key molecule regulating CD8(+) DC function, but also as a factor responsible for functional heterogeneity of CD8(+) DCs that is at least substantially demarcated by CD103 expression.


Subject(s)
Antigens, CD/metabolism , Dendritic Cells/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Integrin alpha Chains/metabolism , Listeria monocytogenes/immunology , Listeriosis/immunology , Animals , Antigens, Bacterial/immunology , Antigens, CD/genetics , Antigens, CD/immunology , CD8 Antigens/biosynthesis , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/pathology , Cells, Cultured , Cross-Priming/genetics , Dendritic Cells/immunology , Dendritic Cells/microbiology , Dendritic Cells/pathology , Gene Expression Regulation/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Immunomodulation , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Listeria monocytogenes/pathogenicity , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Spleen/pathology
18.
J Immunol ; 185(4): 2125-33, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20644172

ABSTRACT

IL-12 is such a pivotal cytokine that it has been called the third signal for T cell activation, TCR engagement being the first and costimulation being the second. It has been generally viewed that the resident CD8(+) dendritic cell (DC) subset is the predominant IL-12-producing cell type. In this study, we found, although this is so under steady state conditions, under inflammatory conditions monocyte-derived DC (mDC) became a major cell type producing IL-12. Depletion of either type of DC resulted in reduced production of IL-12 in vivo. For CD8(+) DC, IL-12 production could be stimulated by various pathways viz. signaling through MyD88, Trif, or nucleotide-binding oligomerization domain (Nod)-like receptors. In contrast, for mDC, IL-12 production was mainly dependent on MyD88 signaling. Thus, conventional DCs and mDCs use different pathways to regulate IL-12 production.


Subject(s)
Dendritic Cells/immunology , Interleukin-12/immunology , Listeriosis/immunology , Signal Transduction/immunology , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Adaptor Proteins, Vesicular Transport/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female , Flow Cytometry , Interleukin-12/genetics , Interleukin-12/metabolism , Lipopolysaccharides/pharmacology , Listeria monocytogenes/immunology , Listeriosis/microbiology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/metabolism , Poly I-C/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
19.
J Clin Virol ; 47(3): 289-92, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20079688

ABSTRACT

BACKGROUND: Military personnel are highly susceptible to febrile respiratory illnesses (FRI), likely due to crowding, stress and other risk factors present in the military environment. OBJECTIVE: Our objective was to investigate the viral etiological agents responsible for FRI among military recruits training in a tropical climate in Singapore. STUDY DESIGN: From March 2006 through April 2007, a total of 1354 oropharyngeal (throat) swabs were collected from military recruits who reported sick with an oral temperature of > or =38 degrees C and a cough and/or sore throat. Real-time polymerase chain reaction (PCR) was used to assay for the presence of influenza A and B viruses and adenoviruses (H-AdV), and conventional PCR used for the remaining respiratory viruses in all specimens. RESULTS: Influenza A virus was the dominant infection with a laboratory-confirmed incidence of 24% (326/1354) and a predominance of the H3N2 subtype. The temporal pattern for influenza A virus infections coincided with the nation-wide pattern in the civilian community. Detection rates of 12% (159/1354) and 2.7% (5/1354) were obtained for influenza B virus and other respiratory viruses, respectively. CONCLUSIONS: The laboratory findings identified influenza A virus as the primary causative viral agent for FRI in the Singapore military, in strong contrast to findings from temperate countries and countries where recruits are often vaccinated for influenza. Our results suggest that influenza vaccination should be considered as a requirement to reduce the incidence of influenza infections. This is the first report describing respiratory infections in a tropical military setting, in a developed country in Asia.


Subject(s)
Military Personnel , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/classification , Viruses/isolation & purification , Adolescent , Adult , Humans , Male , Oropharynx/virology , Polymerase Chain Reaction/methods , Prevalence , Singapore , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...