Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Proteome Res ; 23(4): 1131-1143, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38417823

ABSTRACT

Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or the tumor microenvironment. Exploring the potential variations in the spatial co-occurrence or colocalization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process and functional analysis of variance. Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered due to data-collection complexities. We demonstrate the superior statistical power and robustness of the method in comparison with existing approaches through realistic simulation studies. Furthermore, we apply the method to three real data sets on different diseases collected using different imaging platforms. In particular, one of these data sets reveals novel insights into the spatial characteristics of various types of colorectal adenoma.


Subject(s)
Computer Simulation , Analysis of Variance
2.
PLoS Genet ; 19(10): e1010983, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37862362

ABSTRACT

In high-throughput spatial transcriptomics (ST) studies, it is of great interest to identify the genes whose level of expression in a tissue covaries with the spatial location of cells/spots. Such genes, also known as spatially variable genes (SVGs), can be crucial to the biological understanding of both structural and functional characteristics of complex tissues. Existing methods for detecting SVGs either suffer from huge computational demand or significantly lack statistical power. We propose a non-parametric method termed SMASH that achieves a balance between the above two problems. We compare SMASH with other existing methods in varying simulation scenarios demonstrating its superior statistical power and robustness. We apply the method to four ST datasets from different platforms uncovering interesting biological insights.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Computer Simulation
3.
PLoS Comput Biol ; 19(9): e1011490, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37756338

ABSTRACT

Spatial heterogeneity in the tumor microenvironment (TME) plays a critical role in gaining insights into tumor development and progression. Conventional metrics typically capture the spatial differential between TME cellular patterns by either exploring the cell distributions in a pairwise fashion or aggregating the heterogeneity across multiple cell distributions without considering the spatial contribution. As such, none of the existing approaches has fully accounted for the simultaneous heterogeneity caused by both cellular diversity and spatial configurations of multiple cell categories. In this article, we propose an approach to leverage spatial entropy measures at multiple distance ranges to account for the spatial heterogeneity across different cellular organizations. Functional principal component analysis (FPCA) is applied to estimate FPC scores which are then served as predictors in a Cox regression model to investigate the impact of spatial heterogeneity in the TME on survival outcome, potentially adjusting for other confounders. Using a non-small cell lung cancer dataset (n = 153) as a case study, we found that the spatial heterogeneity in the TME cellular composition of CD14+ cells, CD19+ B cells, CD4+ and CD8+ T cells, and CK+ tumor cells, had a significant non-zero effect on the overall survival (p = 0.027). Furthermore, using a publicly available multiplexed ion beam imaging (MIBI) triple-negative breast cancer dataset (n = 33), our proposed method identified a significant impact of cellular interactions between tumor and immune cells on the overall survival (p = 0.046). In simulation studies under different spatial configurations, the proposed method demonstrated a high predictive power by accounting for both clinical effect and the impact of spatial heterogeneity.

4.
bioRxiv ; 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37461579

ABSTRACT

Motivation: Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or tumor microenvironment (TME). Exploring the potential variations in the spatial co-occurrence or co-localization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. Results: We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process (PPP) and functional analysis of variance (FANOVA). Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered in such a context due to the complex nature of the data-collection procedure. We demonstrate the superior statistical power and robustness of the method in comparison to existing approaches through realistic simulation studies. Furthermore, we apply the method to three real datasets on different diseases collected using different imaging platforms. In particular, one of these datasets reveals novel insights into the spatial characteristics of various types of precursor lesions associated with colorectal cancer. Availability: The associated R package can be found here, https://github.com/sealx017/SpaceANOVA.

5.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36993287

ABSTRACT

In high-throughput spatial transcriptomics (ST) studies, it is of great interest to identify the genes whose level of expression in a tissue covaries with the spatial location of cells/spots. Such genes, also known as spatially variable genes (SVGs), can be crucial to the biological understanding of both structural and functional characteristics of complex tissues. Existing methods for detecting SVGs either suffer from huge computational demand or significantly lack statistical power. We propose a non-parametric method termed SMASH that achieves a balance between the above two problems. We compare SMASH with other existing methods in varying simulation scenarios demonstrating its superior statistical power and robustness. We apply the method to four ST datasets from different platforms revealing interesting biological insights.

6.
PLoS Comput Biol ; 19(1): e1010758, 2023 01.
Article in English | MEDLINE | ID: mdl-36607897

ABSTRACT

Inferring gene co-expression networks is a useful process for understanding gene regulation and pathway activity. The networks are usually undirected graphs where genes are represented as nodes and an edge represents a significant co-expression relationship. When expression data of multiple (p) genes in multiple (K) conditions (e.g., treatments, tissues, strains) are available, joint estimation of networks harnessing shared information across them can significantly increase the power of analysis. In addition, examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. Condition adaptive fused graphical lasso (CFGL) is an existing method that incorporates condition specificity in a fused graphical lasso (FGL) model for estimating multiple co-expression networks. However, with computational complexity of O(p2K log K), the current implementation of CFGL is prohibitively slow even for a moderate number of genes and can only be used for a maximum of three conditions. In this paper, we propose a faster alternative of CFGL named rapid condition adaptive fused graphical lasso (RCFGL). In RCFGL, we incorporate the condition specificity into another popular model for joint network estimation, known as fused multiple graphical lasso (FMGL). We use a more efficient algorithm in the iterative steps compared to CFGL, enabling faster computation with complexity of O(p2K) and making it easily generalizable for more than three conditions. We also present a novel screening rule to determine if the full network estimation problem can be broken down into estimation of smaller disjoint sub-networks, thereby reducing the complexity further. We demonstrate the computational advantage and superior performance of our method compared to two non-condition adaptive methods, FGL and FMGL, and one condition adaptive method, CFGL in both simulation study and real data analysis. We used RCFGL to jointly estimate the gene co-expression networks in different brain regions (conditions) using a cohort of heterogeneous stock rats. We also provide an accommodating C and Python based package that implements RCFGL.


Subject(s)
Algorithms , Brain , Animals , Rats , Computer Simulation , Gene Regulatory Networks/genetics
7.
Bioinformatics ; 38(15): 3818-3826, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35748713

ABSTRACT

MOTIVATION: Studying the interaction or co-expression of the proteins or markers in the tumor microenvironment of cancer subjects can be crucial in the assessment of risks, such as death or recurrence. In the conventional approach, the cells need to be declared positive or negative for a marker based on its intensity. For multiple markers, manual thresholds are required for all the markers, which can become cumbersome. The performance of the subsequent analysis relies heavily on this step and thus suffers from subjectivity and lacks robustness. RESULTS: We present a new method where different marker intensities are viewed as dependent random variables, and the mutual information (MI) between them is considered to be a metric of co-expression. Estimation of the joint density, as required in the traditional form of MI, becomes increasingly challenging as the number of markers increases. We consider an alternative formulation of MI which is conceptually similar but has an efficient estimation technique for which we develop a new generalization. With the proposed method, we analyzed a lung cancer dataset finding the co-expression of the markers, HLA-DR and CK to be associated with survival. We also analyzed a triple negative breast cancer dataset finding the co-expression of the immuno-regulatory proteins, PD1, PD-L1, Lag3 and IDO, to be associated with disease recurrence. We demonstrated the robustness of our method through different simulation studies. AVAILABILITY AND IMPLEMENTATION: The associated R package can be found here, https://github.com/sealx017/MIAMI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Humans , Computer Simulation , Neoplasms/diagnostic imaging , Tumor Microenvironment
8.
BMC Res Notes ; 15(1): 215, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725622

ABSTRACT

OBJECTIVE: Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) images are usually phenotyped using a manual thresholding process. The thresholding is prone to biases, especially when examining multiple images with high cellularity. RESULTS: Unsupervised cell-phenotyping methods including PhenoGraph, flowMeans, and SamSPECTRAL, primarily used in flow cytometry data, often perform poorly or need elaborate tuning to perform well in the context of mIHC and MIBI data. We show that, instead, semi-supervised cell clustering using Random Forests, linear and quadratic discriminant analysis are superior. We test the performance of the methods on two mIHC datasets from the University of Colorado School of Medicine and a publicly available MIBI dataset. Each dataset contains a bunch of highly complex images.


Subject(s)
Biomarkers, Tumor , Diagnostic Imaging , Cluster Analysis , Flow Cytometry , Immunohistochemistry
9.
PLoS Genet ; 18(4): e1010151, 2022 04.
Article in English | MEDLINE | ID: mdl-35442943

ABSTRACT

With the advent of high throughput genetic data, there have been attempts to estimate heritability from genome-wide SNP data on a cohort of distantly related individuals using linear mixed model (LMM). Fitting such an LMM in a large scale cohort study, however, is tremendously challenging due to its high dimensional linear algebraic operations. In this paper, we propose a new method named PredLMM approximating the aforementioned LMM motivated by the concepts of genetic coalescence and Gaussian predictive process. PredLMM has substantially better computational complexity than most of the existing LMM based methods and thus, provides a fast alternative for estimating heritability in large scale cohort studies. Theoretically, we show that under a model of genetic coalescence, the limiting form of our approximation is the celebrated predictive process approximation of large Gaussian process likelihoods that has well-established accuracy standards. We illustrate our approach with extensive simulation studies and use it to estimate the heritability of multiple quantitative traits from the UK Biobank cohort.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Cohort Studies , Genome-Wide Association Study/methods , Humans , Linear Models , Normal Distribution , Phenotype , Polymorphism, Single Nucleotide/genetics
10.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35106569

ABSTRACT

Single nucleotide polymorphism heritability of a trait is measured as the proportion of total variance explained by the additive effects of genome-wide single nucleotide polymorphisms. Linear mixed models are routinely used to estimate single nucleotide polymorphism heritability for many complex traits, which requires estimation of a genetic relationship matrix among individuals. Heritability is usually estimated by the restricted maximum likelihood or method of moments approaches such as Haseman-Elston regression. The common practice of accounting for such population substructure is to adjust for the top few principal components of the genetic relationship matrix as covariates in the linear mixed model. This can get computationally very intensive on large biobank-scale datasets. Here, we propose a method of moments approach for estimating single nucleotide polymorphism heritability in presence of population substructure. Our proposed method is computationally scalable on biobank datasets and gives an asymptotically unbiased estimate of heritability in presence of discrete substructures. It introduces the adjustments for population stratification in a second-order estimating equation. It allows these substructures to vary in their single nucleotide polymorphism allele frequencies and in their trait distributions (means and variances) while the heritability is assumed to be the same across these substructures. Through extensive simulation studies and the application on 7 quantitative traits in the UK Biobank cohort, we demonstrate that our proposed method performs well in the presence of population substructure and much more computationally efficient than existing approaches.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Databases, Factual , Genome , Genome-Wide Association Study/methods , Humans , Multifactorial Inheritance , Phenotype
11.
Bioinform Adv ; 2(1): vbac039, 2022.
Article in English | MEDLINE | ID: mdl-36699398

ABSTRACT

Summary: Multiplex imaging platforms have become popular for studying complex single-cell biology in the tumor microenvironment (TME) of cancer subjects. Studying the intensity of the proteins that regulate important cell-functions becomes extremely crucial for subject-specific assessment of risks. The conventional approach requires selection of two thresholds, one to define the cells of the TME as positive or negative for a particular protein, and the other to classify the subjects based on the proportion of the positive cells. We present a threshold-free approach in which distance between a pair of subjects is computed based on the probability density of the protein in their TMEs. The distance matrix can either be used to classify the subjects into meaningful groups or can directly be used in a kernel machine regression framework for testing association with clinical outcomes. The method gets rid of the subjectivity bias of the thresholding-based approach, enabling easier but interpretable analysis. We analyze a lung cancer dataset, finding the difference in the density of protein HLA-DR to be significantly associated with the overall survival and a triple-negative breast cancer dataset, analyzing the effects of multiple proteins on survival and recurrence. The reliability of our method is demonstrated through extensive simulation studies. Availability and implementation: The associated R package can be found here, https://github.com/sealx017/DenVar. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

12.
Commun Med (Lond) ; 1(1): 42, 2021.
Article in English | MEDLINE | ID: mdl-35072167

ABSTRACT

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.

13.
Commun Med (Lond) ; 1(1): 42, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-36750622

ABSTRACT

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.


Viral infections affect the body in many ways, including via changes to the epigenome, the sum of chemical modifications to an individual's collection of genes that affect gene activity. Here, we analyzed the epigenome in blood samples from people with and without COVID-19 to determine whether we could find changes consistent with SARS-CoV-2 infection. Using a combination of statistical and machine learning techniques, we identify markers of SARS-CoV-2 infection as well as of severity and progression of COVID-19 disease. These signals of disease progression were present from the initial blood draw when first walking into the hospital. Together, these approaches demonstrate the potential of measuring the epigenome for monitoring SARS-CoV-2 status and severity.

14.
Behav Genet ; 50(6): 423-439, 2020 11.
Article in English | MEDLINE | ID: mdl-32804302

ABSTRACT

Genome-wide association studies (GWASs) are a popular tool for detecting association between genetic variants or single nucleotide polymorphisms (SNPs) and complex traits. Family data introduce complexity due to the non-independence of the family members. Methods for non-independent data are well established, but when the GWAS contains distinct family types, explicit modeling of between-family-type differences in the dependence structure comes at the cost of significantly increased computational burden. The situation is exacerbated with binary traits. In this paper, we perform several simulation studies to compare multiple candidate methods to perform single SNP association analysis with binary traits. We consider generalized estimating equations (GEE), generalized linear mixed models (GLMMs), or generalized least square (GLS) approaches. We study the influence of different working correlation structures for GEE on the GWAS findings and also the performance of different analysis method(s) to conduct a GWAS with binary trait data in families. We discuss the merits of each approach with attention to their applicability in a GWAS. We also compare the performances of the methods on the alcoholism data from the Minnesota Center for Twin and Family Research (MCTFR) study.


Subject(s)
Computational Biology/methods , Genome-Wide Association Study/statistics & numerical data , Multifactorial Inheritance/genetics , Computer Simulation , Data Analysis , Family , Humans , Least-Squares Analysis , Linear Models , Models, Genetic , Models, Statistical , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...