Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
NPJ Vaccines ; 8(1): 157, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828126

ABSTRACT

Annually, seasonal influenza is responsible for millions of infections and hundreds of thousands of deaths. The current method for managing influenza is vaccination using a standardized amount of the influenza virus' primary surface antigen, hemagglutinin (HA), as the intended target of the immune response. This vaccination strategy results in vaccines with variable efficacy year to year due to antigenic drift of HA, which can be further exacerbated by manufacturing processes optimizing growth of vaccine virus in eggs. Due to these limitations, alternative vaccine platforms are actively being explored to improve influenza vaccine efficacy, including cell-based, recombinant protein, and mRNA vaccines. mRNA's rapid, in vitro production makes it an appealing platform for influenza vaccination, and the success of SARS-CoV-2 mRNA vaccines in the clinic has encouraged the development of mRNA vaccines for other pathogens. Here, the immunogenicity and protective efficacy of a quadrivalent mRNA vaccine encoding HA from four seasonal influenza viruses, A/California/07/2009 (H1N1), A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 (B-Victoria lineage), and B/Phuket/3073/2013 (B-Yamagata lineage), was evaluated. In mice, a 120 µg total dose of this quadrivalent mRNA vaccine induced robust antibody titers against each subtype that were commensurate with titers when each antigen was administered alone. Following A/California/04/2009 challenge, mice were fully protected from morbidity and mortality, even at doses as low as 1 µg of each antigen. Additionally, a single administration of 10 µg of quadrivalent mRNA was sufficient to prevent weight loss caused by A/California/04/2009. These results support the promise of this mRNA vaccine for prevention and mitigation of influenza vaccine.

2.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36851695

ABSTRACT

Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.


Subject(s)
COVID-19 , Testosterone , Humans , Female , Male , Animals , Mice , Mice, Inbred C57BL , Receptors, Estrogen , Sex Characteristics , SARS-CoV-2 , Immunoglobulin G , Estrogens , Mice, Knockout , Immunoglobulin A
3.
Microbiol Spectr ; 11(1): e0424022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36695597

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform. However, interruptions in supply chain and high demand for clinical grade reagents have impeded the manufacture and distribution of mRNA vaccines at a time when accelerated vaccine deployment is crucial. Furthermore, the emergence of SARS-CoV-2 variants across the globe continues to threaten the efficacy of vaccines encoding the ancestral virus spike protein. Here, we report results from preclinical studies on mRNA vaccines developed using a proprietary mRNA production process developed by GreenLight Biosciences. Two mRNA vaccines encoding the full-length, nonstabilized SARS-CoV-2 spike protein, GLB-COV2-042 and GLB-COV2-043, containing uridine and pseudouridine, respectively, were evaluated in rodents for their immunogenicity and protection from SARS-CoV-2 challenge with the ancestral strain and the Alpha (B.1.1.7) and Beta (B.1.351) variants. In mice and hamsters, both vaccines induced robust spike-specific binding and neutralizing antibodies, and in mice, vaccines induced significant T cell responses with a clear Th1 bias. In hamsters, both vaccines conferred significant protection following challenge with SARS-CoV-2 as assessed by weight loss, viral load, and virus replication in the lungs and nasopharynx. These results support the development of GLB-COV2-042 and GLB-COV2-043 for clinical use. IMPORTANCE SARS-CoV-2 continues to disrupt everyday life and cause excess morbidity and mortality worldwide. Vaccination has been key to quelling the impact of this respiratory pathogen, and mRNA vaccines have led the charge on this front. However, the emergence of SARS-CoV-2 variants has sparked fears regarding vaccine efficacy. Furthermore, SARS-CoV-2 vaccines continue to be unevenly distributed across the globe. For these reasons and despite the success of emergency authorized and licensed SARS-CoV-2 vaccines, additional vaccines are needed to meet public health demands. The studies presented here are significant as they demonstrate robust protective efficacy of mRNA vaccines developed by GreenLight Biosciences against not only wild-type SARS-CoV-2, but also Alpha and Beta variants. These results support the progression of GreenLight Biosciences SARS-CoV-2 mRNA vaccines to clinical trials as another defense against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , mRNA Vaccines , Animals , Cricetinae , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology , SARS-CoV-2/genetics
4.
Biomedicines ; 10(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36140423

ABSTRACT

Healthy pediatric immune responses depend on adequate vitamin A and D levels. Relationships between solar ultraviolet B (UVB) radiation and vitamin D are well understood, while relationships between sunlight, vitamin A, and its serum escort, retinol binding protein (RBP), are not. A pediatric clinical study enrolled 2-8-year-old children at various times between September 2016 and March 2017, inclusive, in Memphis, Tennessee. A serum sample from each child was then assayed to examine the influence of season on vitamin levels. We found that RBP and RBP/retinol molar ratios decreased in winter months and RBP/retinol ratios correlated positively with the average daily sunlight hours per month. A food frequency questionnaire given to parents/guardians indicated a shift in dietary intake from plant-based foods to animal-based foods by children between winter and spring months. This translated to higher retinol and zinc (integral to RBP-transthyretin-retinol complexes) in the spring, perhaps explaining the seasonal influence on RBP/retinol. RBP and retinol were associated positively with IgG/IgM and IgA/IgM ratios. RBP and retinol, but not 25(OH)D, also correlated positively with influenza virus-specific antibodies. Retinol correlated negatively, while 25(OH)D correlated positively, with certain serum cytokine/chemokine levels. Significant differences in 25(OH)D, immunoglobulin ratios, and cytokines/chemokines were observed between black and white children. In sum, seasonal changes in dietary foods rich in retinol and zinc may have influenced RBP levels, which in turn influenced innate and adaptive immune responses. Results encourage routine monitoring and reporting of season, RBP, and vitamin levels in future clinical studies, as seasons may affect sunlight exposures, diet, vitamin levels, and immune protection against infectious disease.

5.
Nutrients ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014920

ABSTRACT

Human parvovirus B19 causes life-threatening anemia due to transient red cell aplasia (TRCA) in individuals with sickle cell disease (SCD). Children with SCD experiencing profound anemia during TRCA often require red blood cell transfusions and hospitalization. The prevalence of vitamin deficiencies in SCD is high and deficiencies are associated with respiratory and pain symptoms, but the effects of vitamins on acute infection with parvovirus B19 remain unclear. We performed a clinical study in which 20 SCD patients hospitalized with parvovirus B19 infections (Day 0) were monitored over a 120-day time course to query relationships between vitamins A and D and clinical outcomes. There were significant negative correlations between Day 0 vitamin levels and disease consequences (e.g., red blood cell transfusion requirements, inflammatory cytokines). There were significant positive correlations (i) between Day 0 vitamins and peak virus-specific antibodies in nasal wash, and (ii) between Day 0 virus-specific serum plus nasal wash antibodies and absolute reticulocyte counts. There was a significant negative correlation between Day 0 virus-specific serum antibodies and virus loads. To explain the results, we propose circular and complex mechanisms. Low baseline vitamin levels may weaken virus-specific immune responses to permit virus amplification and reticulocyte loss; consequent damage may further reduce vitamin levels and virus-specific immunity. While the complex benefits of vitamins are not fully understood, we propose that maintenance of replete vitamin A and D levels in children with SCD will serve as prophylaxis against parvovirus B19-induced TRCA complications.


Subject(s)
Anemia, Sickle Cell , Parvoviridae Infections , Parvovirus B19, Human , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/therapy , Antibodies, Viral , Child , Humans , Parvoviridae Infections/complications , Parvoviridae Infections/epidemiology , Vitamin A , Vitamins
6.
Front Immunol ; 12: 704391, 2021.
Article in English | MEDLINE | ID: mdl-34858393

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive gene disorder that affects tens of thousands of patients worldwide. Individuals with CF often succumb to progressive lung disease and respiratory failure following recurrent infections with bacteria. Viral infections can also damage the lungs and heighten the CF patient's susceptibility to bacterial infections and long-term sequelae. Vitamin A is a key nutrient important for immune health and epithelial cell integrity, but there is currently no consensus as to whether vitamin A should be monitored in CF patients. Here we evaluate previous literature and present results from a CF mouse model, showing that oral vitamin A supplements significantly reduce lung lesions that would otherwise persist for 5-6 weeks post-virus exposure. Based on these results, we encourage continued research and suggest that programs for the routine monitoring and regulation of vitamin A levels may help reduce virus-induced lung pathology in CF patients.


Subject(s)
Cystic Fibrosis/metabolism , Lung/pathology , Respirovirus Infections/metabolism , Sendai virus/physiology , Vitamin A/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dietary Supplements , Disease Models, Animal , Fatty Acid-Binding Proteins/genetics , Humans , Lung/virology , Mice , Mice, Inbred CFTR , Mice, Transgenic , Promoter Regions, Genetic , Vitamin A/administration & dosage
7.
Vaccines (Basel) ; 9(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34451986

ABSTRACT

Children with sickle cell disease (SCD) suffer life-threatening transient aplastic crisis (TAC) when infected with parvovirus B19. In utero, infection of healthy fetuses may result in anemia, hydrops, and death. Unfortunately, although promising vaccine candidates exist, no product has yet been licensed. One barrier to vaccine development has been the lack of a cost-effective, standardized parvovirus B19 neutralization assay. To fill this void, we evaluated the unique region of VP1 (VP1u), which contains prominent targets of neutralizing antibodies. We discovered an antigenic cross-reactivity between VP1 and VP2 that, at first, thwarted the development of a surrogate neutralization assay. We overcame the cross-reactivity by designing a mutated VP1u (VP1uAT) fragment. A new VP1uAT ELISA yielded results well correlated with neutralization (Spearman's correlation coefficient = 0.581; p = 0.001), superior to results from a standard clinical diagnostic ELISA or an ELISA with virus-like particles. Virus-specific antibodies from children with TAC, measured by the VP1uAT and neutralization assays, but not other assays, gradually increased from days 0 to 120 post-hospitalization. We propose that this novel and technically simple VP1uAT ELISA might now serve as a surrogate for the neutralization assay to support rapid development of a parvovirus B19 vaccine.

8.
Microorganisms ; 9(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34442723

ABSTRACT

While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes serious morbidity and mortality in humans (coronavirus disease 2019, COVID-19), there is an enormous range of disease outcomes following virus exposures. Some individuals are asymptomatic while others succumb to virus infection within days. Presently, the factors responsible for disease severity are not fully understood. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to common cold human coronaviruses (HCoVs). Here, we describe previous literature and a new, murine study designed to examine cross-reactive immune responses between SARS-CoV-2 and common cold HCoVs (represented by prototypes OC43, HKU1, 229E, and NL63). Experimental results have been mixed. In SARS-CoV-2-unexposed humans, cross-reactive serum antibodies were identified toward nucleocapsid (N) and the spike subunit S2. S2-specific antibodies were in some cases associated with neutralization. SARS-CoV-2-unexposed humans rarely exhibited antibody responses to the SARS-CoV-2 spike subunit S1, and when naïve mice were immunized with adjuvanted S1 from either SARS-CoV-2 or common cold HCoVs, S1-specific antibodies were poorly cross-reactive. When humans were naturally infected with SARS-CoV-2, cross-reactive antibodies that recognized common cold HCoV antigens increased in magnitude. Cross-reactive T cells, like antibodies, were present in humans prior to SARS-CoV-2 exposures and increased following SARS-CoV-2 infections. Some studies suggested that human infections with common cold HCoVs afforded protection against disease caused by subsequent exposures to SARS-CoV-2. Small animal models are now available for the testing of controlled SARS-CoV-2 infections. Additionally, in the United Kingdom, a program of SARS-CoV-2 human challenge experiments has received regulatory approval. Future, controlled experimental challenge studies may better define how pre-existing, cross-reactive immune responses influence SARS-CoV-2 infection outcomes.

9.
Viruses ; 13(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064894

ABSTRACT

The year 2021 marks the 40th anniversary since physicians recognized symptoms of the acquired immunodeficiency syndrome (AIDS), a disease that has since caused more than 30 million deaths worldwide. Despite the passing of four decades, there remains no licensed vaccine for the human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS. Despite the development of outstanding anti-retroviral drugs, there are currently more than one-half million deaths each year due to AIDS. Here, we revisit a conventional vaccine strategy used for protection against variable pathogens like HIV-1, which combines an array of diverse surface antigens. The strategy uses antibody recognition patterns to categorize viruses and their surface antigens into groups. Then a leader is assigned for each group and group leaders are formulated into vaccine cocktails. The group leaders are 'natural mosaics', because they share one or more epitope(s) with each of the other group members. We encourage the application of this conventional approach to HIV-1 vaccine design. We suggest that the partnering of an antibody-instructed envelope cocktail with new vaccine vectors will yield a successful vaccine in the HIV-1 field.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/drug effects , Animals , Drug Design , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Humans
10.
Hum Vaccin Immunother ; 17(2): 554-559, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32750273

ABSTRACT

SeVRSV is a replication-competent Sendai virus (SeV)-based vaccine carrying the respiratory syncytial virus (RSV) fusion protein (F) gene. Unmanipulated, non-recombinant SeV is a murine parainfluenza virus type 1 (PIV-1) and serves as a Jennerian vaccine for human PIV-1 (hPIV-1). SeV protects African green monkeys (AGM) from infection after hPIV-1 challenge. The recombinant SeVRSV additionally targets RSV and protects AGM from lower respiratory infections after RSV challenge. The present study is the first to report on the safety, viral genome detection, and immunogenicity following SeVRSV vaccination of healthy adults. Seventeen and four healthy adults received intranasal SeVRSV and PBS, respectively, followed by six months of safety monitoring. Virus genome (in nasal wash) and vaccine-specific antibodies (in sera) were monitored for two and four weeks, respectively, post-vaccination. The vaccine was well-tolerated with only mild to moderate reactions that were also present in the placebo group. No severe reactions occurred. As expected, due to preexisting immunity toward hPIV-1 and RSV in adults, vaccine genome detection was transient. There were minimal antibody responses to SeV and negligible responses to RSV F. Results encourage further studies of SeVRSV with progression toward a clinical trial in seronegative children. Abbreviations: AE-adverse event; SAE-serious adverse event; SeV-Sendai virus; RSV-respiratory syncytial virus; PIV-1-parainfluenza virus-type 1; hPIV-1-human parainfluenza virus-type 1; F-RSV fusion protein; SeVRSV-recombinant SeV carrying the RSV F gene; Ab-antibody; MSW-medically significant wheezing; NOCMC-new onset chronic medical condition, mITT-modified Intent to Treat; ALRI-acute lower respiratory tract infection.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Adult , Animals , Antibodies, Viral , Chlorocebus aethiops , Humans , Immunogenicity, Vaccine , Parainfluenza Virus 1, Human/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Sendai virus/genetics , Viral Fusion Proteins/genetics
11.
Biomedicines ; 8(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036262

ABSTRACT

Asthma affects over 8% of the pediatric population in the United States, and Memphis, Tennessee has been labeled an asthma capital. Plasma samples were analyzed for biomarker profiles from 95 children with severe asthma and 47 age-matched, hospitalized nonasthmatic controls at Le Bonheur Children's Hospital in Memphis, where over 4000 asthmatics are cared for annually. Asthmatics exhibited significantly higher levels of periostin, surfactant protein D, receptor for advanced glycation end products and ß-hexosaminidase compared to controls. Children with severe asthma had lower levels of IgG1, IgG2 and IgA, and higher levels of IgE compared to controls, and approximately half of asthmatics exhibited IgG1 levels that were below age-specific norms. Vitamin A levels, measured by the surrogate retinol-binding protein, were insufficient or deficient in most asthmatic children, and correlated positively with IgG1. Which came first, asthma status or low levels of vitamin A and immunoglobulins? It is likely that inflammatory disease and immunosuppressive drugs contributed to a reduction in vitamin A and immunoglobulin levels. However, a nonmutually exclusive hypothesis is that low dietary vitamin A caused reductions in immune function and rendered children vulnerable to respiratory disease and consequent asthma pathogenesis. Continued attention to nutrition in combination with the biomarker profile is recommended to prevent and treat asthma in vulnerable children.

12.
Int J Mol Sci ; 21(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759702

ABSTRACT

Vitamin A is an important regulator of immune protection, but it is often overlooked in studies of infectious disease. Vitamin A binds an array of nuclear receptors (e.g., retinoic acid receptor, peroxisome proliferator-activated receptor, retinoid X receptor) and influences the barrier and immune cells responsible for pathogen control. Children and adults in developed and developing countries are often vitamin A-deficient or insufficient, characteristics associated with poor health outcomes. To gain a better understanding of the protective mechanisms influenced by vitamin A, we examined immune factors and epithelial barriers in vitamin A deficient (VAD) mice, vitamin D deficient (VDD) mice, double deficient (VAD+VDD) mice, and mice on a vitamin-replete diet (controls). Some mice received insults, including intraperitoneal injections with complete and incomplete Freund's adjuvant (emulsified with PBS alone or with DNA + Fus-1 peptide) or intranasal inoculations with Sendai virus (SeV). Both before and after insults, the VAD and VAD+VDD mice exhibited abnormal serum immunoglobulin isotypes (e.g., elevated IgG2b levels, particularly in males) and cytokine/chemokine patterns (e.g., elevated eotaxin). Even without insult, when the VAD and VAD+VDD mice reached 3-6 months of age, they frequently exhibited opportunistic ascending bacterial urinary tract infections. There were high frequencies of nephropathy (squamous cell hyperplasia of the renal urothelium, renal scarring, and ascending pyelonephritis) and death in the VAD and VAD+VDD mice. When younger VAD mice were infected with SeV, the predominant lesion was squamous cell metaplasia of respiratory epithelium in lungs and bronchioles. Results highlight a critical role for vitamin A in the maintenance of healthy immune responses, epithelial cell integrity, and pathogen control.


Subject(s)
Vitamin A Deficiency/genetics , Vitamin A/genetics , Vitamin D Deficiency/genetics , Vitamin D/genetics , Animals , Communicable Diseases/genetics , Communicable Diseases/immunology , Communicable Diseases/metabolism , Death , Disease Models, Animal , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Mice , Mice, Knockout , Neoplasms, Squamous Cell/genetics , Neoplasms, Squamous Cell/immunology , Neoplasms, Squamous Cell/metabolism , Tumor Suppressor Proteins/genetics , Vitamin A/metabolism , Vitamin A Deficiency/immunology , Vitamin A Deficiency/metabolism , Vitamin D/metabolism , Vitamin D Deficiency/immunology , Vitamin D Deficiency/metabolism
13.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679815

ABSTRACT

Questions concerning the influences of nuclear receptors and their ligands on mammalian B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including estrogen and vitamins, on immunoglobulin production and protection from infectious diseases. We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward inert- and self-antigens.


Subject(s)
B-Lymphocytes/immunology , Receptors, Steroid/immunology , Animals , B-Lymphocytes/metabolism , Gene Expression Regulation , Humans , Immunity , Immunoglobulins/genetics , Immunoglobulins/immunology , Receptors, Steroid/genetics , Thyroid Hormones/genetics , Thyroid Hormones/immunology , Vitamin A/genetics , Vitamin A/immunology , Vitamin D/genetics , Vitamin D/immunology
14.
Viral Immunol ; 33(4): 307-315, 2020 05.
Article in English | MEDLINE | ID: mdl-32105583

ABSTRACT

Males and females respond to pathogens differently and exhibit significantly different frequencies of autoimmune disease. For example, vaccinated adult females control influenza virus better than males, but females suffer systemic lupus erythematosus at a 9:1 frequency compared to males. Numerous explanations have been offered for these sex differences, but most have involved indirect mechanisms by which estrogen, a nuclear hormone, modifies cell barriers or immunity. In search of a direct mechanism, we examined the binding of estrogen receptor α (ERα), a class I nuclear hormone receptor, to the immunoglobulin heavy chain locus. Here, we show that in purified murine B cells, ERα and RNA polymerase II (RNA Pol II) exhibit extraordinarily similar DNA binding patterns. We further demonstrate that ERα preferentially binds adenosine-cytidine (AC)-repeats in the immunoglobulin heavy chain locus when supplemental estrogen is added to purified, lipopolysaccharide-activated B cells. Based on these and previous data, we hypothesize that (i) estrogen guides the binding of ERα and its RNA Pol II partner within the locus, which in turn instructs sterile transcription and class switch recombination (CSR), (ii) ERα binding to AC-repeats modifies the DNA architecture and loops associated with CSR, and (iii) by these mechanisms, estrogen instructs antibody expression. By targeting ERα-DNA interactions in the immunoglobulin heavy chain locus, clinicians may ultimately enhance antibody responses in the context of infectious diseases and reduce antibody responses in the context of allergic or autoimmune reactions.


Subject(s)
Estrogen Receptor alpha/metabolism , Immunoglobulin Heavy Chains/genetics , Lupus Erythematosus, Systemic/immunology , Orthomyxoviridae Infections/immunology , RNA Polymerase II/metabolism , Animals , Antibody Formation/immunology , B-Lymphocytes/immunology , Estrogen Receptor alpha/genetics , Female , Humans , Immunoglobulin Class Switching , Lupus Erythematosus, Systemic/genetics , Male , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/genetics , RNA Polymerase II/genetics , Sex Characteristics , Sex Factors
15.
Cell Immunol ; 346: 103996, 2019 12.
Article in English | MEDLINE | ID: mdl-31703914

ABSTRACT

Sex hormones are best known for their influences on reproduction, but they also have profound influences on the immune response. Examples of sex-specific differences include: (i) the relatively poor control of influenza virus infections in males compared to females, (ii) allergic asthma, an IgE-associated hypersensitivity reaction that is exacerbated in adolescent females compared to males, and (iii) systemic lupus erythematosus, a life-threatening autoimmune disease with a 9:1 female:male bias. Here we consider how estrogen and estrogen receptor α (ERα) may influence the immune response by modifying class switch recombination (CSR) and immunoglobulin expression patterns. We focus on ERα binding to enhancers (Eµ and the 3' regulatory region) and switch sites (Sµ and Sε) in the immunoglobulin heavy chain locus. Our preliminary data from ChIP-seq analyses of purified, activated B cells show estrogen-mediated changes in the positioning of ERα binding within and near Sµ and Sε. In the presence of estrogen, ERα is bound not only to estrogen response elements (ERE), but also to adenosine-cytidine (AC)-repeats and poly adenosine (poly A) sequences, in some cases within constant region gene introns. We propose that by binding these sites, estrogen and ERα directly participate in the DNA loop formation required for CSR. We further suggest that estrogen regulates immunoglobulin expression patterns and can thereby influence life-and-death outcomes of infection, hypersensitivity, and autoimmune disease.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Immunoglobulin Class Switching/immunology , Autoimmune Diseases/immunology , Female , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Male , Poly A/genetics , Response Elements/genetics
16.
Viruses ; 11(10)2019 09 30.
Article in English | MEDLINE | ID: mdl-31575021

ABSTRACT

Maximizing vaccine efficacy is critical, but previous research has failed to provide a one-size-fits-all solution. Although vitamin A and vitamin D supplementation studies have been designed to improve vaccine efficacy, experimental results have been inconclusive. Information is urgently needed to explain study discrepancies and to provide guidance for the future use of vitamin supplements at the time of vaccination. We conducted a randomized, blinded, placebo-controlled study of influenza virus vaccination and vitamin supplementation among 2 to 8 (inclusive) year old children over three seasons, including 2015-2016 (n = 9), 2016-2017 (n = 44), and 2017-2018 (n = 26). Baseline measurements of vitamins A and D were obtained from all participants. Measurements were of serum retinol, retinol-binding protein (RBP, a surrogate for retinol), and 25-hydroxyvitamin D (25(OH)D). Participants were stratified into two groups based on high and low incoming levels of RBP. Children received two doses of the seasonal influenza virus vaccine on days 0 and 28, either with an oral vitamin supplement (termed A&D; 20,000 IU retinyl palmitate and 2000 IU cholecalciferol) or a matched placebo. Hemagglutination inhibition (HAI) antibody responses were evaluated toward all four components of the influenza virus vaccines on days 0, 28, and 56. Our primary data were from season 2016-2017, as enrollment was highest in this season and all children exhibited homogeneous and negative HAI responses toward the Phuket vaccine at study entry. Responses among children who entered the study with insufficient or deficient levels of RBP and 25(OH)D benefited from the A&D supplement (p < 0.001 for the day 28 Phuket response), whereas responses among children with replete levels of RBP and 25(OH)D at baseline were unaffected or weakened (p = 0.02 for the day 28 Phuket response). High baseline RBP levels associated with high HAI titers, particularly for children in the placebo group (baseline RBP correlated positively with Phuket HAI titers on day 28, r = 0.6, p = 0.003). In contrast, high baseline 25(OH)D levels associated with weak HAI titers, particularly for children in the A&D group (baseline 25(OH)D correlated negatively with Phuket HAI titers on day 28, r = -0.5, p = 0.02). Overall, our study demonstrates that vitamin A&D supplementation can improve immune responses to vaccines when children are vitamin A and D-insufficient at baseline. Results provide guidance for the appropriate use of vitamins A and D in future clinical vaccine studies.


Subject(s)
Dietary Supplements , Immunity, Humoral , Influenza Vaccines/immunology , Influenza, Human/immunology , Vaccination , Vitamin A/blood , Vitamin D/blood , Antibodies, Viral/blood , Antibody Formation , Child , Child, Preschool , Diterpenes , Female , Hemagglutination Inhibition Tests , Humans , Influenza, Human/prevention & control , Male , Retinyl Esters , Vitamin A/analogs & derivatives , Vitamin D/analogs & derivatives
17.
Front Immunol ; 10: 1576, 2019.
Article in English | MEDLINE | ID: mdl-31379816

ABSTRACT

Vitamin A deficiencies and insufficiencies are widespread in developing countries, and may be gaining prevalence in industrialized nations. To combat vitamin A deficiency (VAD), the World Health Organization (WHO) recommends high-dose vitamin A supplementation (VAS) in children 6-59 months of age in locations where VAD is endemic. This practice has significantly reduced all-cause death and diarrhea-related mortalities in children, and may have in some cases improved immune responses toward pediatric vaccines. However, VAS studies have yielded conflicting results, perhaps due to influences of baseline vitamin A levels on VAS efficacy, and due to cross-regulation between vitamin A and related nuclear hormones. Here we provide a brief review of previous pre-clinical and clinical data, showing how VAD and VAS affect immune responses, vaccines, and infectious diseases. We additionally present new results from a VAD mouse model. We found that when VAS was administered to VAD mice at the time of vaccination with a pneumococcal vaccine (Prevnar-13), pneumococcus (T4)-specific antibodies were significantly improved. Preliminary data further showed that after challenge with Streptococcus pneumoniae, all mice that had received VAS at the time of vaccination survived. This was a significant improvement compared to vaccination without VAS. Data encourage renewed attention to vitamin A levels, both in developed and developing countries, to assist interpretation of data from vaccine research and to improve the success of vaccine programs.


Subject(s)
Immunogenicity, Vaccine/immunology , Vitamin A/administration & dosage , Vitamin A/immunology , Animals , Dietary Supplements , Female , Male , Mice , Mice, Inbred C57BL , Pneumococcal Vaccines/immunology , Pregnancy , Vaccination/methods , Vitamin A Deficiency/immunology
18.
Vaccines (Basel) ; 7(1)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818795

ABSTRACT

Despite extraordinary advances in fields of immunology and infectious diseases, vaccine development remains a challenge. The development of a respiratory syncytial virus vaccine, for example, has spanned more than 50 years of research with studies of more than 100 vaccine candidates. Dozens of attractive vaccine products have entered clinical trials, but none have completed the path to licensing. Human immunodeficiency virus vaccine development has proven equally difficult, as there is no licensed product after more than 30 years of pre-clinical and clinical research. Here, we examine vaccine development with attention to the host. We discuss how nuclear hormones, including vitamins and sex hormones, can influence responses to vaccines. We show how nuclear hormones interact with regulatory elements of immunoglobulin gene loci and how the deletion of estrogen response elements from gene enhancers will alter patterns of antibody isotype expression. Based on these findings, and findings that nuclear hormone levels are often insufficient or deficient among individuals in both developed and developing countries, we suggest that failed vaccine studies may in some cases reflect weaknesses of the host rather than the product. We encourage analyses of nuclear hormone levels and immunocompetence among study participants in clinical trials to ensure the success of future vaccine programs.

19.
Int Immunol ; 31(3): 141-156, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30407507

ABSTRACT

Nuclear hormone receptors including the estrogen receptor (ERα) and the retinoic acid receptor regulate a plethora of biological functions including reproduction, circulation and immunity. To understand how estrogen and other nuclear hormones influence antibody production, we characterized total serum antibody isotypes in female and male mice of C57BL/6J, BALB/cJ and C3H/HeJ mouse strains. Antibody levels were higher in females compared to males in all strains and there was a female preference for IgG2b production. Sex-biased patterns were influenced by vitamin levels, and by antigen specificity toward influenza virus or pneumococcus antigens. To help explain sex biases, we examined the direct effects of estrogen on immunoglobulin heavy chain sterile transcript production among purified, lipopolysaccharide-stimulated B cells. Supplemental estrogen in B-cell cultures significantly increased immunoglobulin heavy chain sterile transcripts. Chromatin immunoprecipitation analyses of activated B cells identified significant ERα binding to estrogen response elements (EREs) centered within enhancer elements of the immunoglobulin heavy chain locus, including the Eµ enhancer and hypersensitive site 1,2 (HS1,2) in the 3' regulatory region. The ERE in HS1,2 was conserved across animal species, and in humans marked a site of polymorphism associated with the estrogen-augmented autoimmune disease, lupus. Taken together, the results highlight: (i) the important targets of ERα in regulatory regions of the immunoglobulin heavy chain locus that influence antibody production, and (ii) the complexity of mechanisms by which estrogen instructs sex-biased antibody production profiles.


Subject(s)
Antibody Formation/genetics , Enhancer Elements, Genetic , Immunoglobulin Heavy Chains/genetics , Receptors, Estrogen/metabolism , Response Elements/genetics , Sex Characteristics , Animals , Antibody Formation/immunology , Binding Sites , Immunoglobulin Heavy Chains/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Response Elements/immunology
20.
Virology ; 509: 60-66, 2017 09.
Article in English | MEDLINE | ID: mdl-28605636

ABSTRACT

Human metapneumovirus (hMPV) infections pose a serious health risk to young children, particularly in cases of premature birth. No licensed vaccine exists and there is no standard treatment for hMPV infections apart from supportive hospital care. We describe the production of a Sendai virus (SeV) recombinant that carries a gene for a truncated hMPV fusion (F) protein (SeV-MPV-Ft). The vaccine induces binding and neutralizing antibody responses toward hMPV and protection against challenge with hMPV in a cotton rat system. Results encourage advanced development of SeV-MPV-Ft to prevent the morbidity and mortality caused by hMPV infections in young children.


Subject(s)
Antigens, Viral/immunology , Drug Carriers , Metapneumovirus/immunology , Paramyxoviridae Infections/prevention & control , Sendai virus/genetics , Viral Fusion Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/genetics , Disease Models, Animal , Metapneumovirus/genetics , Paramyxoviridae Infections/immunology , Sigmodontinae , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Fusion Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...