ABSTRACT
The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.
Subject(s)
Ecosystem , Sunlight , Ultraviolet Rays , Animals , Argentina , Chlorophyll/radiation effects , Plants/radiation effectsABSTRACT
The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.