Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
Animals (Basel) ; 13(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958181

ABSTRACT

Biological invasions are often one of the main causes of global biodiversity loss. Parrots are among the most globally traded taxa and have successfully invaded urban areas. Studies analyzing alien parrot-habitat relationships are scarce in cities of the southern hemisphere. This study aims to determine habitat characteristics influencing exotic parrot species richness, presence, and composition in urban parks in Buenos Aires City and to analyze variations during breeding and non-breeding seasons. A total of 35 parks were sampled during the breeding season and the non-breeding season, and habitat variables at local and landscape scales were measured. Parrot species richness was positively associated with tree species richness and a shorter distance to the La Plata River throughout the year. During the non-breeding season, parrot species richness increased in parks with a higher abundance of tree genera such as Eugenia, Podocarpus, Olea, and Washingtonia. However, during the breeding season, parrot species richness decreased with increased environmental noise. Taxonomic richness was higher during the breeding season. The occurrence of different species and composition depended differentially on each variable, and it varied between seasons. Our findings suggest that exotic parrot richness and presence may be influenced not only by tree diversity and park proximity to green corridors but also by specific exotic tree species providing resources for the parrots. Future urban green space designs should prioritize native tree planting to support local biodiversity over exotic trees that benefit invasive bird species.

2.
An. Fac. Med. (Perú) ; 84(3)sept. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1520014

ABSTRACT

Introducción. La turbidez por lipemia en las muestras para diagnóstico es una de las principales causas de la aparición de sesgos clínicamente significativos en la medición de magnitudes bioquímicas. Objetivo. Valorar la interferencia por lipemia en la medición de 25 constituyentes bioquímicos en dos analizadores con tecnología de química seca (Vitros 7600®) y química liquida (Atellica® Solution). Métodos. Estudio pre-experimental con pre y posprueba. Se añadieron cantidades crecientes de una emulsión lipídica de nutrición parenteral a siete alícuotas de una mezcla de sueros y se determinó por duplicado la influencia del interferente en 25 constituyentes. Se calculó el porcentaje relativo de desviación de la concentración del constituyente por influencia de la turbidez con respecto a una muestra sin interferente. Se establecieron límites de tolerancia para la interferencia utilizando tres criterios: del distribuidor de reactivos, del error sistemático deseable y del error máximo admisible. Resultados. Los constituyentes que presentaron los mayores sesgos para el analizador de química liquida fueron: fósforo (-84,72%), ALT (+81,25%) y AST (-75,76%), mientras que para la plataforma de química seca los constituyentes: ALT (-79,41%), CK (-28,92%) y lipasa (+24,85%). Se detectó interferencia significativa en diferente número de los constituyentes de acuerdo con el criterio de límite tolerable utilizado. Conclusiones. Los distintos resultados encontrados según la metodología y el analizador utilizado, además de la falta de replicabilidad de los ensayos para la valoración de interferencia por lipemia, origina la necesidad de armonizar los procesos e instaurar límites idénticos de interferencia tolerables entre los laboratorios y proveedores de insumos.


Introduction. Turbidity due to lipemia in diagnostic samples is one of the main causes of the appearance of clinically significant biases in the measurement of biochemical magnitudes. Objective. To assess the interference by lipemia in the measurement of 25 biochemical constituents in two analyzers with dry chemistry technology (Vitros 7600®) and liquid chemistry (Atellica® Solution). Methods. Pre-experimental study with pre and post test. Increasing amounts of a parenteral nutrition lipid emulsion were added to seven aliquots of pooled sera and the influence of the interferent on 25 constituents was determined in duplicate. The relative percentage deviation of the concentration of the constituent due to the influence of turbidity with respect to a sample without interference, was calculated. Tolerance limits for interference were established using three criteria: reagent distributor, desirable systematic error, and maximum permissible error. Results. The constituents that presented the greatest biases for the liquid chemistry analyzer were: Phosphorus (-84.72%), ALT (+81.25%) and AST (-75.76%), while for the dry chemistry platform the constituents, ALT (-79.41%), CK (-28.92%) and lipase (+24.85%). Significant interference was detected in a different number of constituents according to the tolerable limit criteria used. Conclusions. The different results found according to the methodology and the analyzer used, in addition to the lack of replicability of the tests for the evaluation of interference by lipemia, originates the need to harmonize the processes and establish identical limits of tolerable interference between the laboratories and suppliers of inputs.

3.
Int J Mol Sci ; 19(3)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29495576

ABSTRACT

Cystine-knot miniproteins (CKMPs) are an intriguing group of cysteine-rich molecules that combine the characteristics of proteins and peptides. Typically, CKMPs are fewer than 50 residues in length and share a characteristic knotted scaffold characterized by the presence of three intramolecular disulfide bonds that form the singular knotted structure. The knot scaffold confers on these proteins remarkable chemical, thermal, and proteolytic stability. Recently, CKMPs have emerged as a novel class of natural molecules with interesting pharmacological properties. In the present work, a novel cystine-knot metallocarboxypeptidase inhibitor (chuPCI) was isolated from tubers of Solanum tuberosum, subsp. andigenum cv. Churqueña. Our results demonstrated that chuPCI is a member of the A/B-type family of metallocarboxypeptidases inhibitors. chuPCI was expressed and characterized by a combination of biochemical and mass spectrometric techniques. Direct comparison of the MALDI-TOF mass spectra for the native and recombinant molecules allowed us to confirm the presence of four different forms of chuPCI in the tubers. The majority of such forms have a molecular weight of 4309 Da and contain a cyclized Gln in the N-terminus. The other three forms are derived from N-terminal and/or C-terminal proteolytic cleavages. Taken together, our results contribute to increase the current repertoire of natural CKMPs.


Subject(s)
Cystine-Knot Miniproteins/chemistry , Plant Proteins/chemistry , Proteomics , Recombinant Proteins , Solanum tuberosum/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Amino Acid Sequence , Animals , Carboxypeptidases/antagonists & inhibitors , Cattle , Cloning, Molecular , Cystine-Knot Miniproteins/analysis , Cystine-Knot Miniproteins/genetics , Cystine-Knot Miniproteins/isolation & purification , Enzyme Activation/drug effects , Kinetics , Plant Proteins/analysis , Plant Proteins/genetics , Plant Proteins/isolation & purification , Protease Inhibitors/analysis , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Proteomics/methods , Sequence Analysis, DNA , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL