Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 274, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448454

ABSTRACT

Forest biomass is an essential resource in relation to the green transition and its assessment is key for the sustainable management of forest resources. Here, we present a forest biomass dataset for Europe based on the best available inventory and satellite data, with a higher level of harmonisation and spatial resolution than other existing data. This database provides statistics and maps of the forest area, biomass stock and their share available for wood supply in the year 2020, and statistics on gross and net volume increment in 2010-2020, for 38 European countries. The statistics of most countries are available at a sub-national scale and are derived from National Forest Inventory data, harmonised using common reference definitions and estimation methodology, and updated to a common year using a modelling approach. For those counties without harmonised statistics, data were derived from the State of Europe's Forest 2020 Report at the national scale. The maps are coherent with the statistics and depict the spatial distribution of the forest variables at 100 m resolution.


Subject(s)
Forests , Wood , Biomass , Databases, Factual , Europe
2.
Ecol Evol ; 13(7): e10232, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37408631

ABSTRACT

In forest communities, light competition is a key process for community assembly. Species' differences in seedling and sapling tolerance to shade cast by overstory trees is thought to determine species composition at late-successional stages. Most forests are distant from these late-successional equilibria, impeding a formal evaluation of their potential species composition. To extrapolate competitive equilibria from short-term data, we therefore introduce the JAB model, a parsimonious dynamic model with interacting size-structured populations, which focuses on sapling demography including the tolerance to overstory competition. We apply the JAB model to a two-"species" system from temperate European forests, that is, the shade-tolerant species Fagus sylvatica L. and the group of all other competing species. Using Bayesian calibration with prior information from external Slovakian national forest inventory (NFI) data, we fit the JAB model to short time series from the German NFI. We use the posterior estimates of demographic rates to extrapolate that F. sylvatica will be the predominant species in 94% of the competitive equilibria, despite only predominating in 24% of the initial states. We further simulate counterfactual equilibria with parameters switched between species to assess the role of different demographic processes for competitive equilibria. These simulations confirm the hypothesis that the higher shade tolerance of F. sylvatica saplings is key for its long-term predominance. Our results highlight the importance of demographic differences in early life stages for tree species assembly in forest communities.

3.
Plants (Basel) ; 12(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111832

ABSTRACT

Biomass allometric relations are necessary for precise estimations of biomass forest stocks, as well as for the quantification of carbon sequestered by forest cover. Therefore, we attempted to create allometric models of total biomass in young silver birch (Betula pendula Roth) trees and their main components, i.e., leaves, branches, stem under bark, bark, and roots. The models were based on data from 180 sample trees with ages up to 15 years originating from natural regeneration at eight sites in the Western Carpathians (Slovakia). Sample trees represented individuals with stem base diameters (diameter D0) from about 4.0 to 113.0 mm and tree heights between 0.4 to 10.7 m. Each tree component was dried to constant mass and weighed. Moreover, subsamples of leaves (15 pieces of each tree) were scanned, dried, and weighed. Thus, we also obtained data for deriving a model expressing total leaf area at the tree level. The allometric models were in the form of regression relations using diameter D0 or tree height as predictors. The models, for instance, showed that while the total tree biomass of birches with a D0 of 50 mm (and a tree height of 4.06 m) was about 1653 g, the total tree biomass of those with a D0 of 100 mm (tree height 6.79 m) reached as much as 8501 g. Modeled total leaf areas for the trees with the above-mentioned dimensions were 2.37 m2 and 8.54 m2, respectively. The results prove that diameter D0 was a better predictor than tree height for both models of tree component biomass and total leaf area. Furthermore, we found that the contribution of individual tree components to total biomass changed with tree size. Specifically, while shares of leaves and roots decreased, those of all other components, especially stems with bark, increased. The derived allometric relations may be implemented for the calculation of biomass stock in birch-dominant or birch-admixed stands in the Western Carpathians or in other European regions, especially where no species- and region-specific models are available.

4.
Plants (Basel) ; 11(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365378

ABSTRACT

Although an important part of the ecosystem, large wild herbivores (LWH), especially red deer (Cervus elaphus L.), cause significant damage to economically valuable timber in forests of Central Europe. Recent work has demonstrated that less valuable softwood broadleaved trees can act as "biological control" that helps reduce bark browsing on more valuable trees in a mixed stand. To better understand the factors that influence how much bark area and mass are removed by LWH from these broadleaved trees, we took advantage of a novel "natural" experiment that occurred after a breach in a herbivory exclosure surrounding a 10-year old mixed broadleaved/conifer stand in the Western Carpathians in north-western Slovakia. We measured the area of old (up to 2 years previously) and new browsed patches on stems of common aspen (Populus tremula L.), common rowan (Sorbus aucuparia L.) and goat willow (Salix caprea L.), and their position along the vertical profile of the stem. The browsed bark area (cm2) was then converted to the bark mass (g) removed and the proportion of browsed bark to total bark (%) using conversion equations. Our models demonstrated that the amount of bark removed was influenced by tree species, stem diameter, age of browsing (old vs. new), and stem section along the vertical profile. LWH removed the most bark area from willow but the most bark mass from aspen because aspen had thicker bark than the other tree species. Bark browsing was greater on trees > 6 cm basal diameter. The distribution of bark browsing along the vertical profile was symmetrical (unimodal) with maximum intensity at 101−125 cm from the ground, which corresponds with the height most optimal for feeding by red deer. However, previous browsing in 2019 and 2020 caused new browsing on willow in 2021 to be focused in stem sections lower (51−75 cm) and higher (126−150 cm) than that optima. By quantifying browsing patterns and the amount of bark that is accessible to LWH for forage on the most attractive softwood broadleaved trees, our work will contribute to developing better methods for protecting commercially important species such as European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. Karst.) in areas of Central Europe that are greatly affected by increasing population density of LWH, especially red deer.

5.
Ecol Evol ; 12(6): e8965, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784022

ABSTRACT

To understand the state and trends in biodiversity beyond the scope of monitoring programs, biodiversity indicators must be comparable across inventories. Species richness (SR) is one of the most widely used biodiversity indicators. However, as SR increases with the size of the area sampled, inventories using different plot sizes are hardly comparable. This study aims at producing a methodological framework that enables SR comparisons across plot-based inventories with differing plot sizes. We used National Forest Inventory (NFI) data from Norway, Slovakia, Spain, and Switzerland to build sample-based rarefaction curves by randomly incrementally aggregating plots, representing the relationship between SR and sampled area. As aggregated plots can be far apart and subject to different environmental conditions, we estimated the amount of environmental heterogeneity (EH) introduced in the aggregation process. By correcting for this EH, we produced adjusted rarefaction curves mimicking the sampling of environmentally homogeneous forest stands, thus reducing the effect of plot size and enabling reliable SR comparisons between inventories. Models were built using the Conway-Maxell-Poisson distribution to account for the underdispersed SR data. Our method successfully corrected for the EH introduced during the aggregation process in all countries, with better performances in Norway and Switzerland. We further found that SR comparisons across countries based on the country-specific NFI plot sizes are misleading, and that our approach offers an opportunity to harmonize pan-European SR monitoring. Our method provides reliable and comparable SR estimates for inventories that use different plot sizes. Our approach can be applied to any plot-based inventory and count data other than SR, thus allowing a more comprehensive assessment of biodiversity across various scales and ecosystems.

6.
Plants (Basel) ; 11(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35567149

ABSTRACT

Considering the surface of individual tree compartments, it is obvious that the main portion of bark, i.e., the largest area and the greatest bulk mass, is located on the stem. We focused on basic bark properties, specifically thickness, surface area, biomass, and specific surface mass (expressed as dry weight per square unit) on stems of four broadleaved species: common aspen (Populus tremula L.), goat willow (Salix caprea L.), rowan (Sorbus aucuparia L.), and sycamore (Acer pseudoplatanus L.). Based on the previous work from mature forests, we hypothesize that bark properties of young trees are also species-specific and change along the stem profile. Thus, across the regions of Slovakia, we selected 27 forest stands composed of one of the target broadleaved species with ages up to 12 years. From the selected forests, 600 sample trees were felled and stem bark properties were determined by measuring bark thickness, weighing bark mass after its separation from the stem, and drying to achieve a constant weight. Since the bark originated from trees of varying stem diameters and from different places along the stem (sections from the stem base 0-50, 51-100, 101-150, 151-200, and 201-250 cm), we could create regression models of stem characteristics based on the two mentioned variables. Our results confirmed that bark thickness, thus also specific surface mass, increased with stem diameter and decreased with distance from the stem base. While common aspen had the thickest stem bark (4.5 mm on the stem base of the largest trees) the thinnest bark from the analyzed species was found for sycamore (nearly three times thinner than the bark of aspen). Since all four tree species are very attractive to large wild herbivores as forage, besides other uses, we might consider our bark mass models also in terms of estimating forage potential and quantity of bark mass consumed by the herbivory.

7.
Plants (Basel) ; 10(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34685962

ABSTRACT

The main goal of this study is to analyse and interpret interspecific differences in foliage biomass/area and woody parts biomass as well as the ratio between quantities of foliage and woody components (i.e., branches, stem and roots). The study was principally aimed at determining basic biomass allocation patterns and growth efficiency (GE) of four broadleaved species, specifically common aspen (Populus tremula L.), European hornbeam (Carpinus betulus L.), silver birch (Betula pendula Roth.) and sycamore (Acer pseudoplatanus L.) in young growth stages. We performed whole-tree sampling at 32 sites located in central and northern parts of Slovakia. We sampled over 700 trees and nearly 4900 leaves to quantify biomass of woody parts and foliage traits at leaf and tree levels. Moreover, we estimated specific leaf area in three parts of the crown, i.e., the upper, middle and lower thirds. We found that hornbeam had the largest foliage biomass and the lowest foliage area of all investigated species, while its biomass of woody parts did not differ from aspen and sycamore. Birch had the lowest biomass of woody parts, although its foliage properties were similar to those of aspen. Intraspecific differences of foliage were related to tree size and to leaf position along the vertical crown profile. Growth efficiency (GE), expressed as woody biomass production per foliage area unit, was evidently larger in hornbeam than in the other three broadleaves. We suggest that future GE modelling should utilize real values of stem diameter increment measured in a current year, bio-sociological position of trees and competition indicators as inputs. Such an approach would elucidate the role of stand structure and tree species mixture for ecological and production properties of forest stands.

8.
Sci Total Environ ; 752: 141794, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32898800

ABSTRACT

Covering large parts of Europe, Norway spruce (Picea abies L Karst.) plays an important role in the adaptation strategy of forest services to future climate change. Although dendroecology can provide valuable information on the past relationships between tree growth and climate, most previous studies were biased towards species-specific distribution limits, where old individuals grow slowly under extreme conditions. In the present study, we investigated the growth variability and climate sensitivity of 2851 Norway spruce trees along longitudinal (E 12-26°), latitudinal (N 45-51°), and elevation (118-1591 m a.s.l.) gradients in central-eastern Europe. We reveal that summer weather significantly affects the radial growth of spruce trees, but the effects strongly vary along biogeographical gradients. Extreme summer heatwaves in 2000 and 2003 reduced the growth rates by 10-35%, most pronounced in the southern Carpathians. In contrast to the population in the Czech Republic, climate warming induced a synchronous decline in the growth rates across biogeographical gradients in the Carpathian arc. By demonstrating the increased vulnerability of Norway spruce under warmer climate conditions, we recommended that the forest services and conservation managers replace or admix monocultures of this species with more drought-resilient mixtures including fir, beech and other broadleaved species.


Subject(s)
Picea , Climate Change , Czech Republic , Europe , Europe, Eastern , Humans , Norway , Trees
9.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32393624

ABSTRACT

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Subject(s)
Climate Change , Cold Temperature , Plant Leaves/growth & development , Seasons , Trees/growth & development , Asia , Europe , Forests , North America , Phenotype , Spatio-Temporal Analysis , Temperature
10.
PLoS One ; 15(3): e0230082, 2020.
Article in English | MEDLINE | ID: mdl-32155218

ABSTRACT

Annual trunk increments are essential for short-term analyses of the response of trees to various factors. For instance, based on annual trunk increments, it is possible to develop and calibrate forest growth models. We investigated the possibility of estimating annual trunk increments from the terrestrial structure from motion (SfM) photogrammetry. Obtaining the annual trunk increments of mature trees is challenging due to the relatively small growth of trunks within one year. In our experiment, annual trunk increments were obtained by two conventional methods: measuring tape (perimeter increment) at heights of 0.8, 1.3, and 1.8 m on the trunk and increment borer (diameter increment) at a height of 1.3 m on the trunk. The following tree species were investigated: Fagus sylvatica L. (beech), Quercus petraea (Matt.) Liebl. (oak), Picea abies (L.) H. Karst (spruce), and Abies alba Mill (fir). The annual trunk increments ranged from 0.9 cm to 2.4 cm (tape/perimeter) and from 0.7 mm to 3.1 mm (borer/diameter). The data were collected before- and after-vegetation season, besides the data collection increment borer. When the estimated perimeters from the terrestrial SfM photogrammetry were compared to those obtained using the measuring tape, the root mean square error (RMSE) was 0.25-1.33 cm. The relative RMSE did not exceed 1% for all tree species. No statistically significant differences were found between the annual trunk increments obtained using the measuring tape and terrestrial SfM photogrammetry for beech, spruce, and fir. Only in the case of oak, the difference was statistically significant. Furthermore, the correlation coefficient between the annual trunk increments collected using the increment borer and those derived from terrestrial SfM photogrammetry was positive and equal to 0.6501. Terrestrial SfM photogrammetry is a hardware low-demanding technique that provides accurate three-dimensional data that can, based on our results, even detect small temporal tree trunk changes.


Subject(s)
Environmental Monitoring/methods , Photogrammetry , Trees/growth & development
11.
Agric For Meteorol ; 263: 308-322, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-35633776

ABSTRACT

Disturbances alter composition, structure, and functioning of forest ecosystems, and their legacies persist for decades to centuries. We investigated how temperate forest landscapes may recover their carbon (C) after severe wind and bark beetle disturbance, while being exposed to climate change. We used the forest landscape and disturbance model iLand to quantify (i) the recovery times of the total ecosystem C, (ii) the effect of climate change on C recovery, and (iii) the differential factors contributing to C recovery. We reconstructed a recent disturbance episode (2008-2016) based on Landsat satellite imagery, which affected 39% of the forest area in the 16,000 ha study landscape. We subsequently simulated forest recovery under a continuation of business-asusual management until 2100. Our results indicated that the recovery of the pre-disturbance C stocks (C payback time) was reached 17 years after the end of the disturbance episode. The C stocks of a theoretical undisturbed development trajectory were reached 30 years after the disturbance episode (C sequestration parity). Drier and warmer climates delayed simulated C recovery. Without the fertilizing effect of CO2, C payback times were delayed by 5-9 years, while C parity was not reached within the 21st century. Recovery was accelerated by an enhanced C uptake compared to undisturbed conditions (disturbance legacy sink effect) that persisted for 35 years after the disturbance episode. Future climate could have negative impacts on forest recovery and thus further amplify climate change through C loss from ecosystems, but the effect is strongly contingent on the magnitude and persistence of alleviating CO2 effects. Our modelling study highlights the need to consider both negative and positive effects of disturbance (i.e., C loss immediately after an event vs. enhanced C uptake of the recovering forest) in order to obtain a comprehensive understanding of disturbance effects on the forest C cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...