Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Int J Mol Cell Med ; 12(3): 220-228, 2023.
Article in English | MEDLINE | ID: mdl-38751655

ABSTRACT

Endometrial carcinoma is one of the most common types of cancer among women. The progression of cancer occurs via the Epithelial- Mesenchymal Transition (EMT) pathway. Cells lose their epithelial properties and become mobile. For this reason, the EMT process is one of the most important step to be targeted in cancer treatment. Oleandrin is a cardiac glycoside and its use is limited due to its narrow therapeutic index. In this study, we aimed to evaluate effects of lower level Oleandrin doses on EMT process in endometrial carcinoma. Oleandrin was administrated to Ishikawa endometrial adenocarcinoma cells at different doses and times. IC50 dose was determined by XTT proliferation test. Expression analysis of EMT-related genes was then performed by qRT-PCR. Invasion and colony formation abilities of cells were examined microscopically. Finally, the migration analysis of cancer cells was determined by the Wound Healing Assay. The IC50 dose of Oleandrin applied to Ishikawa cells was determined as 75.3 nM at the 48 h. According to qRT-PCR analysis, expression levels of ZEB1, FN1, ITGB1, VIM, SMAD2, SNAI1, SNAI2, SNAI3, and TGFB3 genes significantly decreased, but TIMP2, TIMP3, ITGAV and GSK3B genes significantly increased. In addition, Oleandrin significantly reduced colony formation and invasion of Ishikawa cells. According to the Wound Healing analysis, the migratory abilities of the Oleandrin-treated cells were reduced compared to the control. Low dose Oleandrin suppresses the EMT pathway in Ishikawa cells. It has been shown that Oleandrin significantly suppresses the cell's colony formation, invasion and migration ability both in gene expression analyzes and microscopically.

2.
Gene ; 843: 146805, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35964872

ABSTRACT

Melanoma accounts for the majority of skin cancer-related deaths. Nerium oleander is a plant known to be toxic and consumed due to the cardiac glycosides it contains. Oleandrin is a cardiac glycoside obtained from of N. oleander. Beside capable of inhibiting proliferation and metastasis of cancer cells, cardiac glycoside derivative compounds cause cardiovascular side effects. Because of cardiovascular toxicity of clinically used cardiac glycosides, it is necessary to investigate cardiac glycoside derivative compounds capable of inhibiting proliferation and metastasis of cancer cells. It is known that oleandrin has anticarcinogenic effects in other cancers. Previous studies have shown that toll-like receptors (TLRs) and their related microRNAs (miRNAs) are associated with cancer. Therefore, aim was to investigate the effect of oleandrin on genes and miRNAs associated with TLRs in A375 melanoma cells in this study. The effects of oleandrin on cell viability, cytokines, apoptosis were evaluated using XTT, ELISA and TUNEL analyses, respectively. The effect of oleandrin on expression of TLR genes and 5 associated miRNAs in A375 cells has been determined by qRT-PCR. In addition, the levels of MyD88, TLR2 and TLR4 proteins were analyzed by western blot method. ELISA indicated that oleandrin treatment (47 nM at 48 h) reduced the level of proinflammatory cytokine IFNG. TUNEL analysis showed that apoptosis rate was significantly increased in the oleandrin dose group. According to qRT-PCR results, there was a significant decrease in IRAK1, IRAK4, MyD88, TLR2-TLR7 and TRAF3 expressions in the oleandrin treated group compared to the control (untreated cell). Also, a significant decrease in TLR4 protein expression has been observed. In addition, oleandrin significantly downregulated the levels of hsa-miRNA-146a-5p and hsa-miRNA-21-5p. In conclusion, it has been observed that oleandrin has an effect on TLR pathway-related genes and miRNAs in melanoma cells. We show that TLRs pathways and hsa-miR-146a-5p and hsa-miR-21-5p can participate in the oleandrin molecular mechanism of action.


Subject(s)
Cardiac Glycosides , Melanoma , MicroRNAs , Cardenolides , Cardiac Glycosides/pharmacology , Glycosides , Humans , Melanoma/drug therapy , Melanoma/genetics , MicroRNAs/genetics , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 2 , Toll-Like Receptor 4/genetics , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL