Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 7: 28, 2019.
Article in English | MEDLINE | ID: mdl-30915331

ABSTRACT

An effective adaptive immune response requires rapid T cell proliferation, followed by equally robust cell death. These two processes are coordinately regulated to allow sufficient magnitude of response followed by its rapid resolution, while also providing the maintenance of T cell memory. Both aspects of this T cell response are characterized by profound changes in metabolism; glycolysis drives proliferation whereas oxidative phosphorylation supports the survival of memory T cells. While much is known about the separate aspects of T cell expansion and contraction, considerably less is understood regarding how these processes might be connected. We report a link between the induction of glycolysis in CD8+ T cells and upregulation of the inhibitor of complex I and oxidative phosphorylation, methylation-controlled J protein (MCJ). MCJ acts synergistically with glycolysis to promote caspase-3 activity. Effector CD8+ T cells from MCJ-deficient mice manifest reduced glycolysis and considerably less active caspase-3 compared to wild-type cells. Consistent with these observations, in non-glycolytic CD8+ T cells cultured in the presence of IL-15, MCJ expression is repressed by methylation, which parallels their reduced active caspase-3 and increased survival compared to glycolytic IL-2-cultured T cells. Elevated levels of MCJ are also observed in vivo in the highly proliferative and glycolytic subset of CD4-CD8- T cells in Fas-deficient lpr mice. This subset also manifests elevated levels of activated caspase-3 and rapid cell death. Collectively, these data demonstrate tight linkage of glycolysis, MCJ expression, and active caspase-3 that serves to prevent the accumulation and promote the timely death of highly proliferative CD8+ T cells.

2.
Cell Death Dis ; 9(2): 62, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352186

ABSTRACT

Resting T cells undergo a rapid metabolic shift to glycolysis upon activation in the presence of interleukin (IL)-2, in contrast to oxidative mitochondrial respiration with IL-15. Paralleling these different metabolic states are striking differences in susceptibility to restimulation-induced cell death (RICD); glycolytic effector T cells are highly sensitive to RICD, whereas non-glycolytic T cells are resistant. It is unclear whether the metabolic state of a T cell is linked to its susceptibility to RICD. Our findings reveal that IL-2-driven glycolysis promotes caspase-3 activity and increases sensitivity to RICD. Neither caspase-7, caspase-8, nor caspase-9 activity is affected by these metabolic differences. Inhibition of glycolysis with 2-deoxyglucose reduces caspase-3 activity as well as sensitivity to RICD. By contrast, IL-15-driven oxidative phosphorylation actively inhibits caspase-3 activity through its glutathionylation. We further observe active caspase-3 in the lipid rafts of glycolytic but not non-glycolytic T cells, suggesting a proximity-induced model of self-activation. Finally, we observe that effector T cells during influenza infection manifest higher levels of active caspase-3 than naive T cells. Collectively, our findings demonstrate that glycolysis drives caspase-3 activity and susceptibility to cell death in effector T cells independently of upstream caspases. Linking metabolism, caspase-3 activity, and cell death provides an intrinsic mechanism for T cells to limit the duration of effector function.


Subject(s)
Caspase 3/metabolism , Glycolysis/genetics , T-Lymphocytes/metabolism , Humans
3.
Appl Environ Microbiol ; 79(22): 7006-12, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24014541

ABSTRACT

We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730-739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Cobamides/metabolism , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics , Vitamin B 12/biosynthesis , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Culture Media/chemistry , Genes, Bacterial , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/isolation & purification , Multigene Family , RNA, Bacterial/genetics , Riboswitch/genetics , Up-Regulation
4.
Genome Biol Evol ; 4(8): 730-9, 2012.
Article in English | MEDLINE | ID: mdl-22798452

ABSTRACT

The availability of genome sequences of Thermotogales species from across the order allows an examination of the evolutionary origins of phenotypic characteristics in this lineage. Several studies have shown that the Thermotogales have acquired large numbers of genes from distantly related lineages, particularly Firmicutes and Archaea. Here, we report the finding that some Thermotogales acquired the ability to synthesize vitamin B(12) by acquiring the requisite genes from these distant lineages. Thermosipho species, uniquely among the Thermotogales, contain genes that encode the means to synthesize vitamin B(12) de novo from glutamate. These genes are split into two gene clusters: the corrinoid synthesis gene cluster, that is unique to the Thermosipho and the cobinamide salvage gene cluster. The corrinoid synthesis cluster was acquired from the Firmicutes lineage, whereas the salvage pathway is an amalgam of bacteria- and archaea-derived proteins. The cobinamide salvage gene cluster has a patchy distribution among Thermotogales species, and ancestral state reconstruction suggests that this pathway was present in the common Thermotogales ancestor. We show that Thermosipho africanus can grow in the absence of vitamin B(12), so its de novo pathway is functional. We detected vitamin B(12) in the extracts of T. africanus cells to verify the synthetic pathway. Genes in T. africanus with apparent B(12) riboswitches were found to be down-regulated in the presence of vitamin B(12) consistent with their roles in B(12) synthesis and cobinamide salvage.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways , Gene Transfer, Horizontal , Vitamin B 12/biosynthesis , Bacteria/classification , Bacterial Proteins/metabolism , Cobamides/biosynthesis , Molecular Sequence Data , Multigene Family , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...