Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 55(20): 2904-2919, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36153960

ABSTRACT

Atropisomerism is a conformational chirality that occurs when there is hindered rotation about a σ-bond. While atropisomerism is exemplified by biaryls, it is observed in many other pharmaceutically relevant scaffolds including heterobiaryls, benzamides, diarylamines, and anilides. As bond rotation leads to racemization, atropisomers span the gamut of stereochemical stability. LaPlante has classified atropisomers based on their half-life of racemization at 37 °C: class 1 (t1/2 < 60 s), class 2 (60 s < t1/2 < 4.5 years), and class 3 (t1/2 > 4.5 years). In general, class-3 atropisomers are considered to be suitable for drug development. There are currently four FDA-approved drugs that exist as stable atropisomers, and many others are in clinical trials or have recently appeared in the drug discovery literature. Class-1 atropisomers are more prevalent, with ∼30% of recent FDA-approved small molecules possessing at least one class-1 axis. While class-1 atropisomers do not possess the requisite stereochemical stability to meet the classical definition of atropisomerism, they often bind a given target in a specific set of chiral conformations.Over the past decade, our laboratory has embarked on a research program aimed at leveraging atropisomerism as a design feature to improve the target selectivity of promiscuous lead compounds. Our studies initially focused on introducing class-3 atropisomerism into promiscuous kinase inhibitors, resulting in a proof of principle in which the different atropisomers of a compound can have different selectivity profiles with potentially improved target selectivity. This inspired a careful analysis of the binding conformations of diverse ligands bound to different target proteins, resulting in the realization that the sampled dihedral conformations about a prospective atropisomeric axis played a key role in target binding and that preorganizing the prospective atropisomeric axis into a desired target's preferred conformational range can lead to large gains in target selectivity.As atropisomerism is becoming more prevalent in modern drug discovery, there is an increasing need for strategies for atropisomerically pure samples of pharmaceutical compounds. This has led us and other groups to develop catalytic atroposelective methodologies toward pharmaceutically privileged scaffolds. Our laboratory has contributed examples of atroposelective methodologies toward heterobiaryl systems while also exploring the chirality of less-studied atropisomers such as diarylamines and related scaffolds.This Account will detail recent encounters with atropisomerism in medicinal chemistry and how atropisomerism has transitioned from a "lurking menace" into a leverageable design strategy in order to modulate various properties of biologically active small molecules. This Account will also discuss recent advances in atroposelective synthesis, with a focus on methodologies toward pharmaceutically privileged scaffolds. We predict that a better understanding of the effects of conformational restriction about a prospective atropisomeric axis on target binding will empower chemists to rapidly "program" the selectivity of a lead molecule toward a desired target.


Subject(s)
Anilides , Benzamides , Pharmaceutical Preparations , Prospective Studies , Stereoisomerism
2.
RSC Adv ; 12(30): 19431-19444, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35865562

ABSTRACT

This paper describes the synthesis of enamino carbonyl compounds by the copper(i)-catalyzed coupling of acceptor-substituted diazo compounds and tertiary thioamides. We plan to use this method to synthesize indolizidine (-)-237D analogs to find α6-selective antismoking agents. Therefore, we also performed in silico α6-nAchRs binding studies of selected products. Compounds with low root-mean-square deviation values showed more favorable binding free energies. We also report preliminary pharmacokinetic data on indolizidine (-)-237D and found it to have weak activity at CYP3A4. In addition, as enamino carbonyl compounds are also known for antimicrobial properties, we screened previously reported and new enamino carbonyl compounds for antibacterial, antimicrobial, and antifungal properties. Eleven compounds showed significant antimicrobial activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...