Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 16(1): 2338301, 2024.
Article in English | MEDLINE | ID: mdl-38591617

ABSTRACT

Co-formulation of multiple drug products is an efficient and convenient approach to simultaneously deliver multiple biotherapeutics with the potentially added benefit of a synergistic therapeutic effect. However, co-formulation also increases the risk of heteromeric interactions, giving rise to unique impurities with unknown efficacy and immunogenicity. Therefore, it is critical to develop methods to evaluate the risk of heteromers as an impurity that could affect potency, efficacy, and/or immunogenicity. The most direct strategy to evaluate antibody heteromers is via specific enrichment. However, the fact that antibody heterodimers generated from the co-formulated cocktail share highly similar molar mass and size properties as homodimers natively present in each individual antibody drug product poses a unique purification challenge. Here, we report the path to successful enrichment of heterodimers from co-formulated REGEN-COVⓇ and discuss its potential impacts on drug quality.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral
2.
Open Biol ; 12(9): 220179, 2022 09.
Article in English | MEDLINE | ID: mdl-36128717

ABSTRACT

In humans, a single enzyme 2-aminoadipic semialdehyde synthase (AASS) catalyses the initial two critical reactions in the lysine degradation pathway. This enzyme evolved to be a bifunctional enzyme with both lysine-2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase domains (SDH). Moreover, AASS is a unique drug target for inborn errors of metabolism such as glutaric aciduria type 1 that arise from deficiencies downstream in the lysine degradation pathway. While work has been done to elucidate the SDH domain structurally and to develop inhibitors, neither has been done for the LOR domain. Here, we purify and characterize LOR and show that it is activated by alkylation of cysteine 414 by N-ethylmaleimide. We also provide evidence that AASS is rate-limiting upon high lysine exposure of mice. Finally, we present the crystal structure of the human LOR domain. Our combined work should enable future efforts to identify inhibitors of this novel drug target.


Subject(s)
Lysine , Saccharopine Dehydrogenases , Amino Acid Metabolism, Inborn Errors , Animals , Brain Diseases, Metabolic , Cysteine , Ethylmaleimide , Glutaryl-CoA Dehydrogenase/deficiency , Humans , Lysine/metabolism , Mice , Saccharopine Dehydrogenases/chemistry , Saccharopine Dehydrogenases/metabolism
3.
ACS Chem Biol ; 15(8): 2041-2047, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32633484

ABSTRACT

DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.


Subject(s)
Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Thiamine Pyrophosphate/chemistry , Circular Dichroism , Crystallography, X-Ray , Humans , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/genetics , Molecular Structure , Mutation, Missense
4.
Molecules ; 25(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340326

ABSTRACT

Recently, we have shown that harmine induces ß-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. We explore structure-activity relationships of the 7-position of harmine for both DYRK1A kinase inhibition and ß-cell proliferation based on our related previous structure-activity relationship studies of harmine in the context of diabetes and ß-cell specific targeting strategies. 33 harmine analogs of the 7-position substituent were synthesized and evaluated for biological activity. Two novel inhibitors were identified which showed DYRK1A inhibition and human ß-cell proliferation capability. The DYRK1A inhibitor, compound 1-2b, induced ß-cell proliferation half that of harmine at three times higher concentration. From these studies we can draw the inference that 7-position modification is limited for further harmine optimization focused on ß-cell proliferation and cell-specific targeting approach for diabetes therapeutics.


Subject(s)
Harmine/chemistry , Harmine/pharmacology , Insulin-Secreting Cells/drug effects , Animals , Cell Proliferation/drug effects , Harmine/analogs & derivatives , Insulin-Secreting Cells/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
5.
J Med Chem ; 63(6): 2986-3003, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32003560

ABSTRACT

Recently, our group identified that harmine is able to induce ß-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human ß-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human ß-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for ß-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.


Subject(s)
Harmine/analogs & derivatives , Harmine/pharmacology , Insulin-Secreting Cells/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Cells, Cultured , Harmine/chemical synthesis , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Nervous System/drug effects , Nervous System/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats, Wistar , Dyrk Kinases
6.
J Am Chem Soc ; 142(1): 33-37, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31841327

ABSTRACT

The ULK (UNC51-like) enzymes are a family of mammalian kinases that have critical roles in autophagy and development. While ULK1, ULK2, and ULK3 have been characterized, very little is known about ULK4. However, recently, deletions in ULK4 have been genetically linked to increased susceptibility to developing schizophrenia, a devastating neuropsychiatric disease with high heritability but few genes identified. Interestingly, ULK4 is a pseudokinase with some unusual mutations in the kinase catalytic motifs. Here, we report the first structure of the human ULK4 kinase at high resolution and show that although ULK4 has no apparent phosphotransfer activity, it can strongly bind ATP. We find an unusual mechanism for binding ATP in a Mg2+-independent manner, including a rare hydrophobic bridge in the active site. In addition, we develop two assays for ATP binding to ULK4, perform a virtual and experimental screen to identify small-molecule binders of ULK4, and identify several novel scaffolds that bind ULK4 and can lead the way to more selective small molecules that may help shed light on the function of this enigmatic protein.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Schizophrenia/enzymology , Adenosine Triphosphate/metabolism , Animals , Autophagy , Enzyme Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Mutation , Protein Conformation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...