Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Food Chem ; 449: 139155, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608601

ABSTRACT

Forty different sample preparation methods were tested to obtain the most informative MALDI-TOF MS protein profiles of pork meat. Extraction by 25% formic acid with the assistance of zirconia-silica beads followed by defatting by methanol:chloroform mixture (1:1, v/v) and deposition by using the layer-by-layer method was determined as the optimum sample preparation protocol. The discriminatory power of the method was then examined on samples of pork meat and meat products. The method was able to discriminate between selected salami based on the production method and brand and was able to monitor the ripening process in salami. However, it was not able to differentiate between different brands of pork ham or closely located parts of pork meat. In the latter case, a more comprehensive analysis using LC-MS/MS was used to assess the differences in protein abundance and their relation to the outputs of MALDI - TOF MS profiling.


Subject(s)
Meat Products , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Swine , Meat Products/analysis , Pork Meat/analysis , Meat/analysis , Discriminant Analysis
2.
Microbiol Spectr ; : e0134223, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712674

ABSTRACT

Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.

3.
mBio ; 14(2): e0249022, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36779718

ABSTRACT

Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.


Subject(s)
Prophages , Staphylococcal Infections , Humans , Prophages/genetics , Staphylococcus aureus/genetics , Lysogeny , Staphylococcal Infections/microbiology , Staphylococcus , Staphylococcus Phages/genetics , Membrane Proteins/genetics
4.
Syst Appl Microbiol ; 46(1): 126390, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36566621

ABSTRACT

A taxonomic study was conducted on 16 bacterial strains isolated from wild Adélie penguins (Pygoscelis adeliae) from Seymour (Marambio) Island and James Ross Island. An initial screening by repetitive sequence-based PCR fingerprinting divided the strains studied into four coherent groups. Phylogenetic analysis based on 16S rRNA gene sequences assigned all groups to the genus Corynebacterium and showed that Corynebacterium glyciniphilum and Corynebacterium terpenotabidum were the closest species with 16S rRNA gene sequence similarities between 95.4 % and 96.5 %. Further examination of the strains studied with ribotyping, MALDI-TOF mass spectrometry, comprehensive biotyping and calculation of average nucleotide identity and digital DNA-DNA hybridisation values confirmed the separation of the four groups from each other and from the other Corynebacterium species. Chemotaxonomically, the four strains P5828T, P5850T, P6136T, P7210T representing the studied groups were characterised by C16:0 and C18:1ω9c as the major fatty acids, by the presence of meso-diaminopimelic acid in the peptidoglycan, the presence of corynemycolic acids and a quinone system with the predominant menaquinone MK-9(H2). The results of this study show that the strains studied represent four new species of the genus Corynebacterium, for which the names Corynebacterium antarcticum sp. nov. (type strain P5850T = CCM 8835T = LMG 30620T), Corynebacterium marambiense sp. nov. (type strain P5828T = CCM 8864T = LMG 31626T), Corynebacterium meridianum sp. nov. (type strain P6136T = CCM 8863T = LMG 31628T) and Corynebacterium pygosceleis sp. nov. (type strain P7210T = CCM 8836T = LMG 30621T) are proposed.


Subject(s)
Spheniscidae , Animals , Spheniscidae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Corynebacterium , Nucleic Acid Hybridization , DNA , DNA, Bacterial/genetics , Sequence Analysis, DNA
5.
Sci Rep ; 12(1): 21597, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517485

ABSTRACT

Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.


Subject(s)
Spider Venoms , Spiders , Animals , Spiders/chemistry , Spider Venoms/toxicity , Spider Venoms/chemistry , Predatory Behavior , Adaptation, Physiological , Peptides/toxicity
6.
Microorganisms ; 10(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35744624

ABSTRACT

The aim of this study was to analyse the influence of the contamination level of fresh meat on the bacterial population in raw material before cooking and on the microbiota of cooked hams following heat treatment. The effect of incubation temperatures of 6.5 and 15 °C on the results obtained was also evaluated during the bacteriological investigation. The total viable count (TVC), the number of Enterobacteriaceae and lactic acid bacteria (LAB) were determined in the samples. LAB were isolated from 13 samples out of the 50 fresh meat samples. The species most frequently detected included Latilactobacillus sakei, Leuconostoc carnosum, Enterococcus gilvus, Latilactobacillus curvatus, and Leuconostoc gelidum. The meat sampled after the brine injection and tumbler massaging showed higher bacterial counts compared to fresh meat samples (p < 0.001). The heat treatment destroyed the majority of the bacteria, as the bacterial counts were beneath the limit of detection with a few exceptions. Although the primary cultivation of samples of cooked hams did not reveal the presence of LAB, their presence was confirmed in 11 out of 12 samples by a stability test. Bacteria of the genus Leuconostoc were the most numerous.

7.
J Anim Ecol ; 91(9): 1855-1868, 2022 09.
Article in English | MEDLINE | ID: mdl-35765936

ABSTRACT

Biological divergence results from several mechanisms. Defensive mechanisms, such as Batesian mimicry, can cause reproductive isolation via temporal segregation in foraging activity, particularly, in species that closely associate with their model. This seems to be the case of ant-eating spiders, which can be inaccurate Batesian mimics of their prey. Here, we focused on Zodarion nitidum, which has two forms occurring in sympatry, black and yellow. Given the expected noticeable impact of their colour differences on the spiders' interactions with their potential predators and prey, we investigated whether these morphotypes have diverged in other aspects of their biology. We measured the two morphotypes' phenotypic resemblance to a mimetic model, tested whether they were protected from predators, investigated their circadian activity, surveyed the prey they hunted, modelled their distributions, performed crossing experiments and estimated their degree of genetic differentiation. We found that the black morphotype is ant-like, resembling Messor ants, and it was not distinguishable from their ant models by four potential predators. In contrast, the yellow morphotype seems to use predator avoidance as a defensive strategy. Additionally, the two morphotypes differ in their circadian activity, the yellow morphotype being nocturnal and the black one being diurnal. The two morphotypes hunt and associate with different ant prey and possess marked differences in venom composition. Finally, crossing trials showed complete pre-mating isolation between the two morphotypes, but there was no evidence of genetic (mitochondrial data) or environmental niche differentiation. We conclude that the two morphotypes show evidence of a deep differentiation in morphological, behavioural, physiological and ecological traits that evolved together as part of the spider's diverging lifestyles.


Subject(s)
Biological Mimicry , Spiders , Animals , Biological Mimicry/physiology , Predatory Behavior/physiology , Reproductive Isolation , Spiders/physiology , Sympatry
8.
Article in English | MEDLINE | ID: mdl-35442878

ABSTRACT

Strains P8930T and 478 were isolated from Antarctic glaciers located on James Ross Island and King George Island, respectively. They comprised Gram-stain-negative short rod-shaped cells forming pink pigmented colonies and exhibited identical 16S rRNA gene sequences and highly similar MALDI TOF mass spectra, and hence were assigned as representatives of the same species. Phylogenetic analysis based on 16S rRNA gene sequences assigned both isolates to the genus Pedobacter and showed Pedobacter frigidisoli and Pedobacter terrae to be their closest phylogenetic neighbours, with 97.4 and 97.2 % 16S rRNA gene sequence similarities, respectively. These low similarity values were below the threshold similarity value of 98.7%, confirming the delineation of a new bacterial species. Further genomic characterization included whole-genome sequencing accompanied by average nucleotide identity (ANI) and digital DNA-DNA hybridization calculations, and characterization of the genome features. The ANI values between P8930T and P. frigidisoli RP-3-11T and P. terrae DSM 17933T were 79.7 and 77.6 %, respectively, and the value between P. frigidisoli RP-3-11T and P. terrae DSM 17933T was 77.7 %, clearly demonstrating the phylogenetic distance and the novelty of strain P8930T. Further characterization included analysis of cellular fatty acids, quinones and polar lipids, and comprehensive biotyping. All the obtained results proved the separation of strains P8930T and 478 from the other validly named Pedobacter species, and confirmed that they represent a new species for which the name Pedobacter fastidiosus sp. nov. is proposed. The type strain is P8930T (=CCM 8938T=LMG 32098T).


Subject(s)
Pedobacter , Antarctic Regions , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Ecosystem , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Microorganisms ; 10(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35456753

ABSTRACT

A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017-2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, gyrB and lepA genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping. Phylogenetic analysis of the 16S rRNA gene sequences revealed that the entire group are representatives of the genus Massilia. The closest relatives of the reference strain P8398T were Massilia atriviolacea, Massilia violaceinigra, Massilia rubra, Massilia mucilaginosa, Massilia aquatica, Massilia frigida, Massilia glaciei and Massilia eurypsychrophila with a pairwise similarity of 98.6-100% in the 16S rRNA. The subsequent gyrB and lepA sequencing results showed the novelty of the analysed group, and the average nucleotide identity and digital DNA-DNA hybridisation values clearly proved that P8398T represents a distinct Massilia species. After all these results, we nominate a new species with the proposed name Massilia antarctica sp. nov. The type strain is P8398T (= CCM 8941T = LMG 32108T).

10.
Life (Basel) ; 11(8)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34440544

ABSTRACT

Template-free nonenzymatic polymerization of 3',5' cyclic nucleotides is an emerging topic of the origin of life research. In the last ten years, a number of papers have been published addressing various aspects of this process. These works evoked a vivid discussion among scientists working in the field of prebiotic chemistry. The aim of the current review is to answer the most frequently raised questions related to the detection and characterization of oligomeric products as well as to the geological context of this chemistry.

11.
Microbiol Spectr ; 9(1): e0045221, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34378950

ABSTRACT

A group of 11 bacterial strains was isolated from streams and lakes located in a deglaciated northern part of James Ross Island, Antarctica. They were rod-shaped, Gram-stain-negative, motile, and catalase-positive and produced blue-violet-pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, automated ribotyping, repetitive element sequence-based PCR (rep-PCR), MALDI-TOF MS, fatty acid profile, chemotaxonomy analyses, and extensive biotyping was applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all the isolates constituted a coherent group belonging to the genus Rugamonas. The closest relatives to the representative isolate P5900T were Rugamonas rubra CCM 3730T, Rugamonas rivuli FT103WT, and Rugamonas aquatica FT29WT, exhibiting 99.2%, 99.1%, and 98.6% 16S rRNA pairwise similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole-genome sequencing data clearly proved that P5900T represents a distinct Rugamonas species. The G+C content of genomic DNAs was 66.1 mol%. The major components in fatty acid profiles were summed feature 3 (C16:1ω7c/C16:1ω6c), C 16:0, and C12:0. The cellular quinone content contained exclusively ubiquinone Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The polyamine pattern was composed of putrescine, 2-hydroxputrescine, and spermidine. IMPORTANCE Our polyphasic approach provides a new understanding of the taxonomy of novel pigmented Rugamonas species isolated from freshwater samples in Antarctica. The isolates showed considerable extracellular bactericidal secretions. The antagonistic activity of studied isolates against selected pathogens was proved by this study and implied the importance of such compounds' production among aquatic bacteria. The psychrophilic and violacein-producing species Roseomonas violacea may play a role in the diverse consortium among pigmented bacteria in the Antarctic water environment. Based on all the obtained results, we propose a novel species for which the name Rugamonas violacea sp. nov. is suggested, with the type strain P5900T (CCM 8940T; LMG 32105T). Isolates of R. violacea were obtained from different aquatic localities, and they represent the autochthonous part of the water microbiome in Antarctica.


Subject(s)
Indoles/metabolism , Phylogeny , Pseudomonadaceae/classification , Pseudomonadaceae/isolation & purification , Pseudomonadaceae/metabolism , Antarctic Regions , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Lakes , Pseudomonadaceae/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology
12.
Syst Appl Microbiol ; 44(4): 126217, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34107439

ABSTRACT

This study aimed to define the taxonomic position and structure of a novel, taxonomically unique group of 26 Acinetobacter strains, provisionally designated Taxon 24 (T24). The strains were recovered from soil and freshwater ecosystems (n = 21) or animals (n = 5) in Czechia, Scotland, Germany, the Netherlands and Turkey between 1993 and 2015. They were non-glucose-acidifying, nonhemolytic, nonproteolytic, growing at 32 °C and on acetate and ethanol as single carbon sources, but not on 4-hydroxybenzoate and mostly not at 37 °C. Their whole-genome sequences were 3.0-3.7 Mb in size, with GC contents of 39.8-41.3%. Based on core genome phylogenetic analysis, the 26 strains formed a distinct clade within the genus Acinetobacter, with strongly supported subclades termed T24A (n = 11), T24B (n = 8), T24C (n = 2), T24D (n = 3) and T24E (n = 2). The internal genomic ANIb values for these subclades were >94.8%, while the ANIb values between them were <92.5%. The results of MALDI-TOF MS-based analyses agreed with this classification. The five subclades differed from each other in the results of one to six carbon source assimilation tests. Given the genomic and phenotypic distinctness, internal coherence, numbers of available strains and geographically diverse origin of T24A and T24B, we propose the names Acinetobacter terrae sp. nov. and Acinetobacter terrestris sp. nov. for these two taxa, respectively. The type strains are ANC 4282v (= CCM 8986T = CCUG 73811T = CNCTC 8082T) and ANC 4471T (= CCM 8985T = CCUG 73812T = CNCTC 8093T), respectively. We conclude that these two species together with the other T24 strains represent a widely dispersed Acinetobacter clade primarily associated with terrestrial ecosystems.


Subject(s)
Acinetobacter , Phylogeny , Acinetobacter/classification , Animals , Bacterial Typing Techniques , Base Composition , Czech Republic , DNA, Bacterial/genetics , Ecosystem , Fresh Water/microbiology , Genes, Bacterial , Germany , Netherlands , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Scotland , Sequence Analysis, DNA , Soil Microbiology , Turkey
13.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33947819

ABSTRACT

Most rhinoviruses, which are the leading cause of the common cold, utilize intercellular adhesion molecule-1 (ICAM-1) as a receptor to infect cells. To release their genomes, rhinoviruses convert to activated particles that contain pores in the capsid, lack minor capsid protein VP4, and have an altered genome organization. The binding of rhinoviruses to ICAM-1 promotes virus activation; however, the molecular details of the process remain unknown. Here, we present the structures of virion of rhinovirus 14 and its complex with ICAM-1 determined to resolutions of 2.6 and 2.4 Å, respectively. The cryo-electron microscopy reconstruction of rhinovirus 14 virions contains the resolved density of octanucleotide segments from the RNA genome that interact with VP2 subunits. We show that the binding of ICAM-1 to rhinovirus 14 is required to prime the virus for activation and genome release at acidic pH. Formation of the rhinovirus 14-ICAM-1 complex induces conformational changes to the rhinovirus 14 capsid, including translocation of the C termini of VP4 subunits, which become poised for release through pores that open in the capsids of activated particles. VP4 subunits with altered conformation block the RNA-VP2 interactions and expose patches of positively charged residues. The conformational changes to the capsid induce the redistribution of the virus genome by altering the capsid-RNA interactions. The restructuring of the rhinovirus 14 capsid and genome prepares the virions for conversion to activated particles. The high-resolution structure of rhinovirus 14 in complex with ICAM-1 explains how the binding of uncoating receptors enables enterovirus genome release.


Subject(s)
Capsid/metabolism , Intercellular Adhesion Molecule-1/metabolism , RNA, Viral/metabolism , Rhinovirus/metabolism , Virus Activation/physiology , Virus Uncoating/physiology , Amino Acid Sequence , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Genome, Viral/genetics , HeLa Cells , Humans , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/genetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Rhinovirus/genetics , Rhinovirus/physiology , Sequence Homology, Amino Acid , Virion/genetics , Virion/metabolism , Virion/ultrastructure
14.
Article in English | MEDLINE | ID: mdl-32175287

ABSTRACT

Schistosomula (the post-infective stages) of the neurotropic schistosome Trichobilharzia regenti possess multiple isoforms of cathepsin B1 peptidase (TrCB1.1-TrCB1.6) with involvement in nutrient digestion. The comparison of substrate preferences of TrCB1.1 and TrCB1.4 showed that TrCB1.4 had a very narrow substrate specificity and after processing it was less effective toward protein substrates when compared to TrCB1.1. Self-processing of both isoforms could be facilitated by sulfated polysaccharides due to a specific binding motif in the pro-sequence. Trans-activation by heterologous enzymes was also successfully employed. Expression profiling revealed a high level of transcription of genes encoding the enzymatically inactive paralogs TrCB1.5 and TrCB1.6. The transcription level of TrCB1.6 was comparable with that of TrCB1.1 and TrCB1.2, the most abundant active isoforms. Recombinant TrCB1.6wt, a wild type paralog with a Cys29-to-Gly substitution in the active site that renders the enzyme inactive, was processed by the active TrCB1 forms and by an asparaginyl endopeptidase. Although TrCB1.6wt lacked hydrolytic activity, endopeptidase, but not dipeptidase, activity could be restored by mutating Gly29 to Cys29. The lack of exopeptidase activity may be due to other mutations, such as His110-to-Asn in the occluding loop and Asp224-to-Gly in the main body of the mature TrCB1.6, which do not occur in the active isoforms TrCB1.1 and TrCB1.4 with exopeptidase activity. The catalytically active enzymes and the inactive TrCB1.6 paralog formed complexes with chicken cystatin, thus supporting experimentally the hypothesis that inactive paralogs could potentially regulate the activity of the active forms or protect them from being inhibited by host inhibitors. The effect on cell viability and nitric oxide production by selected immune cells observed for TrCB1.1 was not confirmed for TrCB1.6. We show here that the active isoforms of TrCB1 have different affinities for peptide substrates thereby facilitating diversity in protein-derived nutrition for the parasite. The inactive paralogs are unexpectedly highly expressed and one of them retains the ability to bind cystatins, likely due to specific mutations in the occluding loop and the enzyme body. This suggests a role in sequestration of inhibitors and protection of active cysteine peptidases.


Subject(s)
Cathepsin B/metabolism , Cystatins/metabolism , Schistosomatidae/enzymology , Schistosomatidae/pathogenicity , Amino Acid Substitution , Animals , Astrocytes/metabolism , Cathepsin B/chemistry , Cathepsin B/genetics , Cell Survival , Enzyme Precursors/metabolism , Hydrolysis , Isoenzymes/metabolism , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Protein Binding , Proteolysis , RAW 264.7 Cells , Recombinant Proteins/metabolism , Substrate Specificity
15.
Microorganisms ; 8(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024111

ABSTRACT

Members of the genus Staphylococcus are widespread in nature and occupy a variety of niches, however, staphylococcal colonization of animals in the Antarctic environment has not been adequately studied. Here, we describe the first isolation and characterization of two Staphylococcus intermedius group (SIG) members, Staphylococcus delphini and Staphylococcus pseudintermedius, in Antarctic wildlife. Staphylococcus delphini were found exclusively in Adélie penguins. The report of S. pseudintermedius from Weddell seals confirmed its occurrence in all families of the suborder Caniformia. Partial RNA polymerase beta-subunit (rpoB) gene sequencing, repetitive PCR fingerprinting with the (GTG)5 primer, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry gave consistent identification results and proved to be suitable for identifying SIG members. Comparative genomics of S. delphini isolates revealed variable genomic elements, including new prophages, a novel phage-inducible chromosomal island, and numerous putative virulence factors. Surface and extracellular protein distribution were compared between genomes and showed strain-specific profiles. The pathogenic potential of S. delphini was enhanced by a novel type of exfoliative toxin, trypsin-like serine protease cluster, and enterotoxin C. Detailed analysis of phenotypic characteristics performed on six Antarctic isolates of S. delphini and eight reference strains from different animal sources enabled us to emend the species description of S. delphini.

16.
Int J Syst Evol Microbiol ; 70(12): 6364-6372, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33599603

ABSTRACT

A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Hymenobacter. The closest relative was Hymenobacter humicola CCM 8763T, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342T and P5252T, respectively. Average nucleotide identity, digital DNA-DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252T and P5342T represent two distinct Hymenobacter species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C16:1 ω7c/C16:1ω6c), C16:1ω5c, summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), anteiso-C15:0 and iso-C15 : 0 for all isolates. Based on the obtained results, two novel species are proposed, for which the names Hymenobacter terrestris sp. nov. (type strain P5252T=CCM 8765T=LMG 31495T) and Hymenobacter lapidiphilus sp. nov. (type strain P5342T=CCM 8764T=LMG 30613T) are suggested.


Subject(s)
Cytophagaceae/classification , Phylogeny , Soil Microbiology , Antarctic Regions , Bacterial Typing Techniques , Base Composition , Cytophagaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Islands , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
17.
Methods Mol Biol ; 2068: 173-181, 2020.
Article in English | MEDLINE | ID: mdl-31576528

ABSTRACT

Fingerprinting by means of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents a tool for rapidly detecting proteinaceous compounds from spider venoms. Here we describe an optimized protocol and discuss methodological details with the aim of providing a platform for obtaining the most informative and reproducible mass spectral data.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spider Venoms/analysis , Animals , Proteins/analysis , Proteins/chemistry , Spider Venoms/chemistry
18.
Int J Med Microbiol ; 309(8): 151355, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563331

ABSTRACT

Staphylococcus petrasii is recently described coagulase negative staphylococcal species and an opportunistic human pathogen, still often misidentified in clinical specimens. Four subspecies are distinguished in S. petrasii by polyphasic taxonomical analyses, however a comparative study has still not been done on the majority of isolates and their genome properties have not yet been thoroughly analysed. Here, we describe the phenotypic and genotypic characteristics of 65 isolates and the results of de novo sequencing, whole genome assembly and annotation of draft genomes of five strains. The strains were identified by MALDI-TOF mass spectrometry to the species level and the majority of the strains were identified to the subspecies level by fingerprinting methods, (GTG)5 repetitive PCR and ribotyping. Macrorestriction profiling by pulsed-field gel electrophoresis was confirmed to be a suitable strain typing method. Comparative genomics revealed the presence of new mobile genetic elements carrying antimicrobial resistance factors such as staphylococcal cassette chromosome (SCC) mec, transposones, phage-inducible genomic islands, and plasmids. Their mosaic structure and similarity across coagulase-negative staphylococci and Staphylococcus aureus suggest the possible exchange of these elements. Numerous putative virulence factors such as adhesins, autolysins, exoenzymes, capsule formation genes, immunomodulators, the phage-associated sasX gene, and SCC-associated spermidine N-acetyltransferase gene, pseudouridine and sorbitol utilization operons might explain clinical manifestations of S. petrasii isolates. The increasing recovery of S. petrasii isolates from human clinical material, the multi-drug resistance including methicillin resistance of S. petrasii subsp. jettensis strains, and virulence factors homologous to other pathogenic staphylococci demonstrate the importance of the species in human disease.


Subject(s)
Genome, Bacterial , Interspersed Repetitive Sequences , Staphylococcus/genetics , Virulence Factors/genetics , Bacterial Typing Techniques , Electrophoresis, Gel, Pulsed-Field , Genomics , Genotype , Humans , Microbial Sensitivity Tests , Phenotype , Ribotyping , Staphylococcus/classification , Staphylococcus/pathogenicity
19.
Curr Protein Pept Sci ; 20(11): 1119-1129, 2019.
Article in English | MEDLINE | ID: mdl-31518219

ABSTRACT

BACKGROUND: As the bacterial resistance to antibacterial chemotherapeutics is one of the greatest problems in modern medicine, efforts are made to develop new antimicrobial drugs. Compounds with a piperazine ring have proved to be promising agents against various pathogens. OBJECTIVE: The aim of the study was to prepare a series of new N-phenylpiperazines and determine their activity against various pathogens. METHOD: Target compounds were prepared by multi-step synthesis starting from an appropriate substituted acid to an oxirane intermediate reacting with 1-(4-nitrophenyl)piperazine. Lipophilicity and pKa values were experimentally determined. Other molecular parameters were calculated. The inhibitory activity of the target compounds against Staphylococcus aureus, four mycobacteria strains, Bipolaris sorokiniana, and Fusarium avenaceum was tested. In vitro antiproliferative activity was determined on a THP-1 cell line, and toxicity against plant was determined using Nicotiana tabacum. RESULTS: In general, most compounds demonstrated only moderate effects. 1-(2-Hydroxy-3-{[4-(propan- 2-yloxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride and 1-{3-[(4-butoxybenzoyl)- oxy]-2-hydroxypropyl}-4-(4-nitrophenyl)piperazinediium dichloride showed the highest inhibition activity against M. kansasii (MIC = 15.4 and 15.0 µM, respectively) and the latter also against M. marinum (MIC = 15.0 µM). 1-(2-Hydroxy-3-{[4-(2-propoxyethoxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride had the highest activity against F. avenaceum (MIC = 14.2 µM). All the compounds showed only insignificant toxic effects on human and plant cells. CONCLUSION: Ten new 1-(4-nitrophenyl)piperazine derivatives were prepared and analyzed, and their antistaphylococcal, antimycobacterial, and antifungal activities were determined. The activity against M. kansasii was positively influenced by higher lipophilicity, the electron-donor properties of substituent R and a lower dissociation constant. The exact mechanism of action will be investigated in follow-up studies.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Anti-Bacterial Agents/toxicity , Antifungal Agents/toxicity , Drug Design , Microbial Sensitivity Tests , Piperazines/toxicity , Structure-Activity Relationship
20.
Sci Rep ; 9(1): 11127, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366939

ABSTRACT

Colicin production in Escherichia coli (E. coli) strains represents an important trait with regard to microbial survival and competition in the complex intestinal environment. A novel colicin type, colicin Z (26.3 kDa), was described as a product of an original producer, extraintestinal E. coli B1356 strain, isolated from the anorectal abscess of a 17 years-old man. The 4,007 bp plasmid (pColZ) was completely sequenced and colicin Z activity (cza) and colicin Z immunity (czi) genes were identified. The cza and czi genes are transcribed in opposite directions and encode for 237 and 151 amino acid-long proteins, respectively. Colicin Z shows a narrow inhibitory spectrum, being active only against enteroinvasive E. coli (EIEC) and Shigella strains via CjrC receptor recognition and CjrB- and ExbB-, ExbD-mediated colicin translocation. All tested EIEC and Shigella strains isolated between the years 1958-2010 were sensitive to colicin Z. The lethal effect of colicin Z was found to be directed against cell wall peptidoglycan (PG) resulting in PG degradation, as revealed by experiments with Remazol Brilliant Blue-stained purified peptidoglycans and with MALDI-TOF MS analyses of treated PG. Colicin Z represents a new class of colicins that is structurally and functionally distinct from previously studied colicin types.


Subject(s)
Colicins/genetics , Escherichia coli/genetics , Shigella/genetics , Adolescent , Base Sequence , Humans , Male , Microbial Sensitivity Tests , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...