Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 619(7968): 57-62, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316659

ABSTRACT

Correlation and frustration play essential roles in physics, giving rise to novel quantum phases1-6. A typical frustrated system is correlated bosons on moat bands, which could host topological orders with long-range quantum entanglement4. However, the realization of moat-band physics is still challenging. Here, we explore moat-band phenomena in shallowly inverted InAs/GaSb quantum wells, where we observe an unconventional time-reversal-symmetry breaking excitonic ground state under imbalanced electron and hole densities. We find that a large bulk gap exists, encompassing a broad range of density imbalances at zero magnetic field (B), accompanied by edge channels that resemble helical transport. Under an increasing perpendicular B, the bulk gap persists, and an anomalous plateau of Hall signals appears, which demonstrates an evolution from helical-like to chiral-like edge transport with a Hall conductance approximately equal to e2/h at 35 tesla, where e is the elementary charge and h is Planck's constant. Theoretically, we show that strong frustration from density imbalance leads to a moat band for excitons, resulting in a time-reversal-symmetry breaking excitonic topological order, which explains all our experimental observations. Our work opens up a new direction for research on topological and correlated bosonic systems in solid states beyond the framework of symmetry-protected topological phases, including but not limited to the bosonic fractional quantum Hall effect.

2.
Phys Rev Lett ; 115(19): 195301, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588392

ABSTRACT

We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

3.
Phys Rev Lett ; 114(3): 037203, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25659019

ABSTRACT

A number of lattices exhibit moatlike band structures, i.e., a band with infinitely degenerate energy minima attained along a closed line in the Brillouin zone. If such a lattice is populated with hard-core bosons, the degeneracy prevents their condensation. At half-filling, the system is equivalent to the s=1/2 XY model at a zero magnetic field, while the absence of condensation translates into the absence of magnetic order in the XY plane. Here, we show that the ground state breaks time reversal as well as inversion symmetries. This state, which may be identified with the chiral spin liquid, has a bulk gap and chiral gapless edge excitations. The applications of the developed analytical theory include an explanation of recent numerical findings and a suggestion for the chiral spin liquid realizations in experiments with cold atoms in optical lattices.

SELECTION OF CITATIONS
SEARCH DETAIL