Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Res Methods ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366119

ABSTRACT

Early work on selective attention used auditory-based tasks, such as dichotic listening, to shed light on capacity limitations and individual differences in these limitations. Today, there is great interest in individual differences in attentional abilities, but the field has shifted towards visual-modality tasks. Furthermore, most conflict-based tests of attention control lack reliability due to low signal-to-noise ratios and the use of difference scores. Critically, it is unclear to what extent attention control generalizes across sensory modalities, and without reliable auditory-based tests, an answer to this question will remain elusive. To this end, we developed three auditory-based tests of attention control that use an adaptive response deadline (DL) to account for speed-accuracy trade-offs: Auditory Simon DL, Auditory Flanker DL, and Auditory Stroop DL. In a large sample (N = 316), we investigated the psychometric properties of the three auditory conflict tasks, tested whether attention control is better modeled as a unitary factor or modality-specific factors, and estimated the extent to which unique variance in modality-specific factors contributed incrementally to the prediction of dichotic listening and multitasking performance. Our analyses indicated that the auditory conflict tasks have strong psychometric properties and demonstrate convergent validity with visual tests of attention control. Auditory and visual attention control factors were highly correlated (r = .81)-even after controlling for perceptual processing speed (r = .75). Modality-specific attention control factors accounted for unique variance in modality-matched criterion measures, but the majority of the explained variance was modality-general. The results suggest an interplay between modality-general attention control and modality-specific processing.

2.
Cogn Affect Behav Neurosci ; 24(1): 111-125, 2024 02.
Article in English | MEDLINE | ID: mdl-38253775

ABSTRACT

The mechanisms for how large-scale brain networks contribute to sustained attention are unknown. Attention fluctuates from moment to moment, and this continuous change is consistent with dynamic changes in functional connectivity between brain networks involved in the internal and external allocation of attention. In this study, we investigated how brain network activity varied across different levels of attentional focus (i.e., "zones"). Participants performed a finger-tapping task, and guided by previous research, in-the-zone performance or state was identified by low reaction time variability and out-of-the-zone as the inverse. In-the-zone sessions tended to occur earlier in the session than out-of-the-zone blocks. This is unsurprising given the way attention fluctuates over time. Employing a novel method of time-varying functional connectivity, called the quasi-periodic pattern analysis (i.e., reliable, network-level low-frequency fluctuations), we found that the activity between the default mode network (DMN) and task positive network (TPN) is significantly more anti-correlated during in-the-zone states versus out-of-the-zone states. Furthermore, it is the frontoparietal control network (FPCN) switch that differentiates the two zone states. Activity in the dorsal attention network (DAN) and DMN were desynchronized across both zone states. During out-of-the-zone periods, FPCN synchronized with DMN, while during in-the-zone periods, FPCN switched to synchronized with DAN. In contrast, the ventral attention network (VAN) synchronized more closely with DMN during in-the-zone periods compared with out-of-the-zone periods. These findings demonstrate that time-varying functional connectivity of low frequency fluctuations across different brain networks varies with fluctuations in sustained attention or other processes that change over time.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Reaction Time
3.
Article in English | MEDLINE | ID: mdl-37701786

ABSTRACT

One prominent feature of the infraslow BOLD signal during rest or task is quasi-periodic spatiotemporal pattern (QPP) of signal changes that involves an alternation of activity in key functional networks and propagation of activity across brain areas, and that is known to tie to the infraslow neural activity involved in attention and arousal fluctuations. This ongoing whole-brain pattern of activity might potentially modify the response to incoming stimuli or be modified itself by the induced neural activity. To investigate this, we presented checkerboard sequences flashing at 6Hz to subjects. This is a salient visual stimulus that is known to produce a strong response in visual processing regions. Two different visual stimulation sequences were employed, a systematic stimulation sequence in which the visual stimulus appeared every 20.3 secs and a random stimulation sequence in which the visual stimulus occurred randomly every 14~62.3 secs. Three central observations emerged. First, the two different stimulation conditions affect the QPP waveform in different aspects, i.e., systematic stimulation has greater effects on its phase and random stimulation has greater effects on its magnitude. Second, the QPP was more frequent in the systematic condition with significantly shorter intervals between consecutive QPPs compared to the random condition. Third, the BOLD signal response to the visual stimulus across both conditions was swamped by the QPP at the stimulus onset. These results provide novel insights into the relationship between intrinsic patterns and stimulated brain activity.

4.
Neuroimage ; 276: 120165, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37172663

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

SELECTION OF CITATIONS
SEARCH DETAIL