Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768176

ABSTRACT

The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner.


Subject(s)
Aspergillus fumigatus , Polysaccharides , Humans , Dactinomycin , Imatinib Mesylate , Polysaccharides/metabolism , Aspergillus fumigatus/metabolism , Biofilms
2.
Glycobiology ; 32(9): 814-824, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35713520

ABSTRACT

The human pathogenic fungus Aspergillus fumigatus synthesizes the zwitterionic glycolipid Manα1,3Manα1,6GlcNα1,2IPC, named Af3c. Similar glycosphingolipids having a glucosamine (GlcN) linked in α1,2 to inositolphosphoceramide (IPC) as core structure have only been described in a few pathogenic fungi. Here, we describe an A. fumigatus cluster of 5 genes (AFUA_8G02040 to AFUA_8G02090) encoding proteins required for the glycan part of the glycosphingolipid Af3c. Besides the already characterized UDP-GlcNAc:IPC α1,2-N-acetylglucosaminyltransferase (GntA), the cluster encodes a putative UDP-GlcNAc transporter (NstA), a GlcNAc de-N-acetylase (GdaA), and 2 mannosyltransferases (OchC and ClpC). The function of these proteins was inferred from analysis of the glycolipids extracted from A. fumigatus strains deficient in one of the genes. Moreover, successive introduction of the genes encoding GntA, GdaA, OchC, and ClpC in the yeast Saccharomyces cerevisiae enabled the reconstitution of the Af3c biosynthetic pathway. Absence of Af3c slightly reduced the virulence of A. fumigatus in a Galleria mellonella infection model.


Subject(s)
Aspergillus fumigatus , Mannosyltransferases , Aspergillus fumigatus/genetics , Glycosphingolipids/metabolism , Humans , Mannosyltransferases/metabolism , Multigene Family , Saccharomyces cerevisiae/metabolism
3.
J Biol Chem ; 295(4): 1066-1076, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31862733

ABSTRACT

C-Mannosylation is a common modification of thrombospondin type 1 repeats present in metazoans and recently identified also in apicomplexan parasites. This glycosylation is mediated by enzymes of the DPY19 family that transfer α-mannoses to tryptophan residues in the sequence WX2WX2C, which is part of the structurally essential tryptophan ladder. Here, deletion of the dpy19 gene in the parasite Toxoplasma gondii abolished C-mannosyltransferase activity and reduced levels of the micronemal protein MIC2. The loss of C-mannosyltransferase activity was associated with weakened parasite adhesion to host cells and with reduced parasite motility, host cell invasion, and parasite egress. Interestingly, the C-mannosyltransferase-deficient Δdpy19 parasites were strongly attenuated in virulence and induced protective immunity in mice. This parasite attenuation could not simply be explained by the decreased MIC2 level and strongly suggests that absence of C-mannosyltransferase activity leads to an insufficient level of additional proteins. In summary, our results indicate that T. gondii C-mannosyltransferase DPY19 is not essential for parasite survival, but is important for adhesion, motility, and virulence.


Subject(s)
Host-Parasite Interactions , Mannose/metabolism , Parasites/pathogenicity , Protozoan Proteins/metabolism , Toxoplasma/pathogenicity , Animals , Cell Adhesion , Cell Movement , Computer Simulation , Female , Gene Deletion , Glycosylation , Host-Parasite Interactions/immunology , Humans , Male , Mice , Parasites/cytology , Parasites/immunology , Proteolysis , Toxoplasma/cytology , Toxoplasma/immunology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...