Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Physiol Behav ; 263: 114126, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36787810

ABSTRACT

Temperature sensitive receptors in the skin and deep body enable the detection of the external and internal environment, including the perception of thermal stimuli. Changes in heat balance require autonomic (e.g., sweating) and behavioral (e.g., seeking shade) thermoeffector initiation to maintain thermal homeostasis. Sex differences in body morphology can largely, but not entirely, account for divergent responses in thermoeffector and perceptual responses to environmental stress between men and women. Thus, it has been suggested that innate differences in thermosensation may exist between men and women. Our goal in this review is to summarize the existing literature that investigates localized and whole-body cold and heat exposure pertaining to sex differences in thermal sensitivity and perception, and the interplay between autonomic and behavioral thermoeffector responses. Overall, it appears that local differences in thermal sensitivity and perception are minimized, yet still apparent, when morphological characteristics are well-controlled. Sex differences in the early vasomotor response to environmental stress and subsequent changes in blood flow likely contribute to the heightened thermal awareness observed in women. However, the contribution of thermoreceptors to observed sex differences in thermal perception and thermoeffector function is unclear, as human studies investigating these questions have not been performed.


Subject(s)
Body Temperature Regulation , Sex Characteristics , Female , Humans , Male , Body Temperature Regulation/physiology , Sweating , Skin/blood supply , Skin Temperature , Perception/physiology
3.
Temperature (Austin) ; 9(2): 122-157, 2022.
Article in English | MEDLINE | ID: mdl-36106151

ABSTRACT

Habituation is an adaptation seen in many organisms, defined by a reduction in the response to repeated stimuli. Evolutionarily, habituation is thought to benefit the organism by allowing conservation of metabolic resources otherwise spent on sub-lethal provocations including repeated cold exposure. Hypermetabolic and/or insulative adaptations may occur after prolonged and severe cold exposures, resulting in enhanced cold defense mechanisms such as increased thermogenesis and peripheral vasoconstriction, respectively. Habituation occurs prior to these adaptations in response to short duration mild cold exposures, and, perhaps counterintuitively, elicits a reduction in cold defense mechanisms demonstrated through higher skin temperatures, attenuated shivering, and reduced cold sensations. These habituated responses likely serve to preserve peripheral tissue temperature and conserve energy during non-life threatening cold stress. The purpose of this review is to define habituation in general terms, present evidence for the response in non-human species, and provide an up-to-date, critical examination of past studies and the potential physiological mechanisms underlying human cold habituation. Our aim is to stimulate interest in this area of study and promote further experiments to understand this physiological adaptation.

4.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R638-R647, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36094451

ABSTRACT

Military and/or emergency services personnel may be required to perform high-intensity physical activity during exposure to elevated inspired carbon dioxide (CO2). Although many of the physiological consequences of hypercapnia are well characterized, the effects of graded increases in inspired CO2 on self-paced endurance performance have not been determined. The aim of this study was to compare the effects of 0%, 2%, and 4% inspired CO2 on 2-mile run performance, as well as physiological and perceptual responses during time trial exercise. Twelve physically active volunteers (peak oxygen uptake = 49 ± 5 mL·kg-1·min-1; 3 women) performed three experimental trials in a randomized, single-blind, crossover manner, breathing 21% oxygen with either 0%, 2%, or 4% CO2. During each trial, participants completed 10 min of walking at ∼40% peak oxygen uptake followed by a self-paced 2-mile treadmill time trial. One participant was unable to complete the 4% CO2 trial due to lightheadedness during the run. Compared with the 0% CO2 trial, run performance was 5 ± 3% and 7 ± 3% slower in the 2% and 4% CO2 trials, respectively (both P < 0.001). Run performance was significantly slower with 4% versus 2% CO2 (P = 0.046). The dose-dependent performance impairments were accompanied by stepwise increases in mean ventilation, despite significant reductions in running speed. Dyspnea and headache were significantly elevated during the 4% CO2 trial compared with both the 0% and 2% trials. Overall, our findings show that graded increases in inspired CO2 impair endurance performance in a stepwise manner in healthy humans.


Subject(s)
Carbon Dioxide , Hypercapnia , Female , Humans , Exercise Test , Oxygen , Oxygen Consumption/physiology , Physical Endurance/physiology , Single-Blind Method
5.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R457-R466, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35968897

ABSTRACT

This investigation sought to assess whether single or repeated bouts of ischemic preconditioning (IPC) could improve oxyhemoglobin saturation ([Formula: see text]) and/or attenuate reductions in muscle tissue saturation index (TSI) during submaximal hypoxic exercise. Fifteen healthy young men completed submaximal graded exercise under four experimental conditions: 1) normoxia (NORM), 2) hypoxia (HYP) [oxygen fraction of inspired air ([Formula: see text]) = 0.14, ∼3,200 m], 3) hypoxia preceded by a single session of IPC (IPC1-HYP), and 4) hypoxia preceded by seven sessions of IPC, one a day for 7 consecutive days (IPC7-HYP). IPC7-HYP heightened minute ventilation (V̇e) at 80% HYP peak cycling power output (Wpeak) (+10.47 ± 3.35 L·min-1, P = 0.006), compared with HYP, as a function of increased breathing frequency. Both IPC1-HYP (+0.17 ± 0.04 L·min-1, P < 0.001) and IPC7-HYP (+0.16 ± 0.04 L·min-1, P < 0.001) elicited greater oxygen consumption (V̇o2) across exercise intensities compared with NORM, whereas V̇o2 was unchanged with HYP alone. [Formula: see text] was unchanged by either IPC condition at any exercise intensity, yet the reduction of muscle TSI during resting hypoxic exposure was attenuated by IPC7-HYP (+9.9 ± 3.6%, P = 0.040) compared with HYP, likely as a function of reduced local oxygen extraction. Considering all exercise intensities, IPC7-HYP attenuated reductions of TSI with HYP (+6.4 ± 1.8%, P = 0.001). Seven days of IPC heightens ventilation, posing a threat to ventilatory efficiency, during high-intensity submaximal hypoxic exercise and attenuates reductions in hypoxic resting and exercise muscle oxygenation in healthy young men. A single session of IPC may be capable of modulating hypoxic ventilation; however, our present population was unable to demonstrate this with certainty.


Subject(s)
Ischemic Preconditioning , Oxyhemoglobins , Humans , Hypoxia , Male , Muscles , Oxygen , Oxygen Consumption/physiology
6.
Eur J Sport Sci ; 22(9): 1383-1390, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34110272

ABSTRACT

Ischemic preconditioning (IPC) involves brief, repeated bouts of limb occlusion and reperfusion capable of improving exercise performance at least partially by enhancing local skeletal muscle oxygenation. This study sought to investigate the effect of a lower limb IPC protocol, with either a 5-min or 45-min post-application delay, on vastus lateralis tissue saturation index (TSI) and systemic cardiac hemodynamics at rest and during short-duration intense cycling. Twelve young adults randomly completed four interventions: IPC (at 220 mmHg) with 5-min delay (IPC5), IPC with 45-min delay (IPC45), SHAM (at 20 mmHg) with 5-min delay (SHAM5), and SHAM with 45-min delay (SHAM45). Following IPC intervention and recovery delay, participants completed 5, 60-s high-intensity (100% Wpeak) cycle sprints separated by 120-sec of active recovery (30% Wpeak). Compared to baseline, TSI immediately following IPC5, but pre-exercise, remained lower than the equivalent for IPC45 (-5.9 ± 1.5%, p = .002). IPC, imposed at least 45-min before the completion of five 60-s sprint cycling efforts, significantly enhanced TSI during active recovery between sprint intervals compared to a 5-min delay (6.6 ± 2.4%, p = .021), and identical SHAM conditions (SHAM5: 5.8 ± 2.2%, p = .024; SHAM45: 6.2 ± 2.5%, p = .029). A 45-min delay following IPC appears to provide heightened skeletal muscle metabolic rebound prior to intense sprint cycling as compared to a 5-min delay. Furthermore, IPC followed by a 45-min delay enhanced recovery of skeletal muscle oxygenation during low intensity active sprint recovery, despite an unchanged decline in skeletal muscle oxygenation during near-maximal sprinting efforts.


Subject(s)
Ischemic Preconditioning , Oxygen Consumption , Bicycling/physiology , Humans , Ischemic Preconditioning/methods , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Oxygen Saturation , Young Adult
7.
Front Sports Act Living ; 3: 658410, 2021.
Article in English | MEDLINE | ID: mdl-34079934

ABSTRACT

Athletes and certain occupations (e.g., military, firefighters) must navigate unique heat challenges as they perform physical tasks during prolonged heat stress, at times while wearing protective clothing that hinders heat dissipation. Such environments and activities elicit physiological adjustments that prioritize thermoregulatory skin perfusion at the expense of arterial blood pressure and may result in decreases in cerebral blood flow. High levels of skin blood flow combined with an upright body position augment venous pooling and transcapillary fluid shifts in the lower extremities. Combined with sweat-driven reductions in plasma volume, these cardiovascular alterations result in levels of cardiac output that do not meet requirements for brain blood flow, which can lead to orthostatic intolerance and occasionally syncope. Skin surface cooling countermeasures appear to be a promising means of improving orthostatic tolerance via autonomic mechanisms. Increases in transduction of sympathetic activity into vascular resistance, and an increased baroreflex set-point have been shown to be induced by surface cooling implemented after passive heating and other arterial pressure challenges. Considering the further contribution of exercise thermogenesis to orthostatic intolerance risk, our goal in this review is to provide an overview of post-exercise cooling strategies as they are capable of improving autonomic control of the circulation to optimize orthostatic tolerance. We aim to synthesize both basic and applied physiology knowledge available regarding real-world application of cooling strategies to reduce the likelihood of experiencing symptomatic orthostatic intolerance after exercise in the heat.

8.
Front Sports Act Living ; 3: 660910, 2021.
Article in English | MEDLINE | ID: mdl-33997780

ABSTRACT

Sports limit the length of breaks between halves or periods, placing substantial time constraints on cooling effectiveness. This study investigated the effect of active cooling during both time-limited and prolonged post-exercise recovery in the heat. Ten recreationally-active adults (VO2peak 43.6 ± 7.5 ml·kg-1·min-1) were exposed to thermally-challenging conditions (36°C air temperature, 45% RH) while passively seated for 30 min, cycling for 60 min at 51% VO2peak, and during a seated recovery for 60 min that was broken into two epochs: first 15 min (REC0-15) and total 60 min (REC0-60). Three different cooling techniques were implemented during independent recovery trials: (a) negative-pressure single hand-cooling (~17°C); (b) ice vest; and (c) non-cooling control. Change in rectal temperature (T re), mean skin temperature ( T ¯ sk ), heart rate (HR), and thermal sensation (TS), as well as mean body temperature ( T ¯ b ), and heat storage (S) were calculated for exercise, REC0-15 and REC0-60. During REC0-15, HR was lowered more with the ice vest (-9 [-15 to -3] bts·min-1, p = 0.002) and single hand-cooling (-7 [-13 to -1] bts·min-1, p = 0.021) compared to a non-cooling control. The ice vest caused a greater change in T ¯ sk compared to no cooling (-1.07 [-2.00 to -0.13]°C, p = 0.021) and single-hand cooling (-1.07 [-2.01 to -0.14]°C, p = 0.020), as well as a greater change in S compared to no cooling (-84 [-132 to -37] W, p < 0.0001) and single-hand cooling (-74 [-125 to -24] W, p = 0.002). Across REC0-60, changes in T ¯ b (-0.38 [-0.69 to -0.07]°C, p = 0.012) and T ¯ sk (-1.62 [-2.56 to -0.68]°C, p < 0.0001) were greater with ice vest compared to no cooling. Furthermore, changes in in T ¯ b (-0.39 [-0.70 to -0.08]°C, p = 0.010) and T ¯ sk (-1.68 [-2.61 to -0.74]°C, p < 0.0001) were greater with the ice vest compared to single-hand cooling. Using an ice vest during time-limited and prolonged recovery in the heat aided in a more effective reduction in thermo-physiological strain compared to both passive cooling as well as a single-hand cooling device.

9.
Med Sci Sports Exerc ; 52(1): 170-177, 2020 01.
Article in English | MEDLINE | ID: mdl-31343517

ABSTRACT

INTRODUCTION: Isoflavones, a chemical class of phytoestrogens found in soybeans and soy products, may have biological functions similar to estradiol. After binding with ERß or perhaps independently of estrogen receptors, isoflavones may augment vascular endothelial relaxation, contributing to improved limb blood flow. PURPOSE: To determine if acute fermented soy extract supplementation influences 20-km time trial cycling performance and cardiac hemodynamics compared with a placebo. METHODS: Subjects included 25 cyclists and triathletes (31 ± 8 yr, V˙O2peak: 55.1 ± 8.4 mL·kg·min). Each subject completed a V˙O2peak assessment, familiarization, and two 20-km time trials in randomized order after ingestion of a fermented soy extract supplement or placebo. The fermented soy extract consisted of 30 g powdered supplement in 16 fl. ounces of water. The placebo contained the same quantities of organic cocoa powder and water. Each trial consisted of 60 min of rest, 30 min at 55% Wpeak, and a self-paced 20-km time trial. RESULTS: Soy supplementation elicited a faster time to 20-km completion (-0.22 ± 0.51 min; -13 s), lower average HR (-5 ± 7 bpm), and significantly greater power (7 ± 3 W) and speed (0.42 ± 0.16 km·h) during the last 5 km of the time trial compared with placebo. Analysis of the results by relative fitness level (<57 vs ≥ 57 mL⋅kg⋅min) indicated that those with a higher level of fitness reaped the largest performance improvement alongside a reduced HR (-5 ± 7 bpm). CONCLUSIONS: Ingestion of a fermented soy extract supplement improved sprint-distance performance through improvements in both power and speed. For those with great aerobic fitness, soy supplementation may help to decrease cardiac demand alongside performance improvement.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Dietary Supplements , Glycine max/chemistry , Isoflavones/administration & dosage , Plant Extracts/administration & dosage , Adult , Cardiac Output/physiology , Double-Blind Method , Endothelium, Vascular/enzymology , Heart Rate/physiology , Humans , Male , Nitric Oxide Synthase/metabolism , Stroke Volume/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...