Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746266

ABSTRACT

Adolescence is a period of increased risk taking, including increased alcohol and drug use. Multiple clinical studies report a positive relationship between adolescent alcohol consumption and risk of developing an alcohol use disorder (AUD) in adulthood. However, few preclinical studies have attempted to tease apart the biological contributions of adolescent alcohol exposure, independent of other social, environmental, and stress factors, and studies that have been conducted show mixed results. Here we use several adolescent voluntary consumption of alcohol models, conducted across three institutes and with two rodent species, to investigate the ramifications of adolescent alcohol consumption on adulthood alcohol consumption in controlled, pre-clinical environments. We consistently demonstrate a lack of increase in adulthood alcohol consumption. This work highlights that risks seen in both human datasets and other murine drinking models may be due to unique social and environmental factors - some of which may be unique to humans.

2.
Neurobiol Stress ; 29: 100605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38268931

ABSTRACT

Alzheimer's Disease and related dementias (ADRD) are an increasing threat to global health initiatives. Efforts to prevent the development of ADRD require understanding behaviors that increase and decrease risk of neurodegeneration and cognitive decline, in addition to uncovering the underlying biological mechanisms behind these effects. Stress exposure and alcohol consumption have both been associated with increased risk for ADRD in human populations. However, our ability to understand causal mechanisms of ADRD requires substantial preclinical research. In this review, we summarize existing human and animal research investigating the connections between lifetime stress and alcohol exposures and ADRD.

3.
Pharmacol Biochem Behav ; 232: 173655, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37802393

ABSTRACT

Adolescent alcohol exposure is associated with lasting behavioral changes in humans and in mice. Prior work from our laboratory and others have demonstrated that C57BL/6J and DBA/2J mice differ in sensitivity to some effects of acute alcohol exposure during adolescence and adulthood. However, it is unknown if these strains differ in cognitive, anxiety-related, and addiction-related long-term consequences of adolescent intermittent alcohol exposure. This study examined the impact of a previously validated adolescent alcohol exposure paradigm (2-3 g/kg, i.p., every other day PND 30-44) in C57BL/6J and DBA/2J male and female mice on adult fear conditioning, anxiety-related behavior (elevated plus maze), and addiction-related phenotypes including nicotine sensitivity (hypothermia and locomotor depression) and alcohol sensitivity (loss of righting reflex; LORR). Both shared and strain-specific long-term consequences of adolescent alcohol exposure were found. Most notably, we found a strain-specific alcohol-induced increase in sensitivity to nicotine's hypothermic effects during adulthood in the DBA/2J strain but not in the C57BL/6J strain. Conversely, both strains demonstrated a robust increased latency to LORR during adulthood after adolescent alcohol exposure. Thus, we observed strain-dependent cross-sensitization to nicotine and strain-independent tolerance to alcohol due to adolescent alcohol exposure. Several strain and sex differences independent of adolescent alcohol treatment were also observed. These include increased sensitivity to nicotine-induced hypothermia in the C57BL/6J strain relative to the DBA/2J strain, in addition to DBA/2J mice showing more anxiety-like behaviors in the elevated plus maze relative to the C57BL/6J strain. Overall, these results suggest that adolescent alcohol exposure results in altered adult sensitivity to nicotine and alcohol with some phenotypes mediated by genetic background.

4.
Brain Res Bull ; 194: 35-44, 2023 03.
Article in English | MEDLINE | ID: mdl-36681252

ABSTRACT

Adolescent sensitivity to alcohol is a predictor of continued alcohol use and misuse later in life. Thus, it is important to understand the many factors that can impact alcohol sensitivity. Data from our laboratory suggested that susceptibility to alcohol-associated contextual fear learning deficits varied among adolescent and adult mice from two mouse strains. To investigate the extent of genetic background's influences on adolescent learning after alcohol exposure, we examined how 9 inbred mouse strains differed in vulnerability to alcohol-induced contextual and cued fear conditioning deficits. We demonstrated significant strain- and sex-dependent effects of acute alcohol exposure on adolescent fear learning, with alcohol having most pronounced effects on contextual fear learning. Female adolescents were more susceptible than males to alcohol-induced impairments in contextual, but not cued, fear learning, independent of genetic background. Heritability for contextual and cued fear learning after alcohol exposure was estimated to be 31 % and 18 %, respectively. Learning data were compared to Blood Ethanol Concentrations (BEC) to assess whether strain differences in alcohol metabolism contributed to strain differences in learning after alcohol exposure. There were no clear relationships between BEC and learning outcomes, suggesting that strains differed in learning outcomes for reasons other than strain differences in alcohol metabolism. Genetic analyses revealed polymorphisms across strains in notable genes, such as Chrna7, a promising genetic candidate for susceptibility to alcohol-induced fear conditioning deficits. These results are the first to demonstrate the impact of genetic background on alcohol-associated fear learning deficits during adolescence and suggest that the mechanisms underlying this sensitivity are distinct from alcohol metabolism.


Subject(s)
Ethanol , Learning , Animals , Female , Male , Mice , Cues , Ethanol/pharmacology , Fear , Conditioning, Psychological , Mice, Inbred Strains
5.
Neuropharmacology ; 221: 109279, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36208797

ABSTRACT

Genetic background impacts sensitivity to nicotine's rewarding and aversive effects and metabolism, which influences susceptibility to nicotine addiction. This is important because sensitivity to nicotine influences susceptibility to nicotine addiction. Thus, understanding genetic contribution to nicotine sensitivity can aid in identifying risk factors for nicotine addiction. Genetic variability in addiction phenotypes can be modeled in rodent systems, and comparisons of nicotine sensitivity in inbred mice can identify contributing genetic substrates. Our laboratory has identified differences in nicotine sensitivity in male mice from two inbred mouse strains, C57BL/6J and NOD/ShiLtJ. We found that the NOD/ShiLtJ strain experienced greater nicotine-induced locomotor depression and hypothermia than the C57BL/6J strain. To investigate possible differences in nicotine metabolism between strains, subjects were treated with acute nicotine and serum and urine samples were analyzed using LC-MS/MS to quantify nicotine and metabolites. This analysis revealed that NOD/ShiLtJ mice had similar serum nicotine but lower cotinine and 3'-hydroxycotinine levels after nicotine treatment when compared to C57BL/6J mice. Possible genetic factors mediating strain differences were identified by surveying nicotine sensitivity- and metabolism-related genes within the Mouse Phenome Database SNP retrieval tool. Polymorphisms were found in 15 of the 26 examined gene sequences. Liver expression levels of nicotine metabolism-related genes (Cyp2a5, Cyp2a4, and Aox1) were measured using qPCR. NOD/ShiLtJ mice showed lower expression of Cyp2a5 and Cyp2a4 and greater expression of Aox1 in liver tissue. These data demonstrate complex differences in nicotine sensitivity and metabolism driven by genetic differences between C57BL/6J and NOD/ShiLtJ inbred mouse strains.


Subject(s)
Nicotine , Tobacco Use Disorder , Mice , Male , Animals , Nicotine/pharmacology , Nicotine/metabolism , Mice, Inbred C57BL , Mice, Inbred NOD , Tobacco Use Disorder/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Inbred Strains
6.
Pharmacol Biochem Behav ; 218: 173429, 2022 07.
Article in English | MEDLINE | ID: mdl-35820468

ABSTRACT

Understanding the genetic basis of a predisposition for nicotine and alcohol use across the lifespan is important for public health efforts because genetic contributions may change with age. However, parsing apart subtle genetic contributions to complex human behaviors is a challenge. Animal models provide the opportunity to study the effects of genetic background and age on drug-related phenotypes, while controlling important experimental variables such as amount and timing of drug exposure. Addiction research in inbred, or isogenic, mouse lines has demonstrated genetic contributions to nicotine and alcohol abuse- and addiction-related behaviors. This review summarizes inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes including voluntary consumption/self-administration, initial sensitivity to the drug as measured by sedative, hypothermic, and ataxic effects, locomotor effects, conditioned place preference or place aversion, drug metabolism, and severity of withdrawal symptoms. This review also discusses how these alcohol and nicotine addiction-related phenotypes change from adolescence to adulthood.


Subject(s)
Tobacco Use Disorder , Adolescent , Adult , Animals , Ethanol , Humans , Mice , Mice, Inbred Strains , Nicotine/pharmacology , Phenotype , Tobacco Use Disorder/genetics
7.
Front Psychiatry ; 12: 737897, 2021.
Article in English | MEDLINE | ID: mdl-34733190

ABSTRACT

Learning is a critical behavioral process that is influenced by many neurobiological systems. We and others have reported that acetylcholinergic signaling plays a vital role in learning capabilities, and it is especially important for contextual fear learning. Since cholinergic signaling is affected by genetic background, we examined the genetic relationship between activity levels of acetylcholinesterase (AChE), the primary enzyme involved in the acetylcholine metabolism, and learning using a panel of 20 inbred mouse strains. We measured conditioned fear behavior and AChE activity in the dorsal hippocampus, ventral hippocampus, and cerebellum. Acetylcholinesterase activity varied among inbred mouse strains in all three brain regions, and there were significant inter-strain differences in contextual and cued fear conditioning. There was an inverse correlation between fear conditioning outcomes and AChE levels in the dorsal hippocampus. In contrast, the ventral hippocampus and cerebellum AChE levels were not correlated with fear conditioning outcomes. These findings strengthen the link between acetylcholine activity in the dorsal hippocampus and learning, and they also support the premise that the dorsal hippocampus and ventral hippocampus are functionally discrete.

8.
Cells ; 10(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34685603

ABSTRACT

Variants in a gene cluster upstream-adjacent to TERC on human chromosome 3, which includes genes APRM, LRRC31, LRRC34 and MYNN, have been associated with telomere length in several human populations. Currently, the mechanism by which variants in the TERC gene cluster influence telomere length in humans is unknown. Given the proximity between the TERC gene cluster and TERC (~0.05 Mb) in humans, it is speculated that cluster variants are in linkage disequilibrium with a TERC causal variant. In mice, the Terc gene/Terc gene cluster are also located on chromosome 3; however, the Terc gene cluster is located distantly downstream of Terc (~60 Mb). Here, we initially aim to investigate the interactions between genotype and nicotine exposure on absolute liver telomere length (aTL) in a panel of eight inbred mouse strains. Although we found no significant impact of nicotine on liver aTL, this first experiment identified candidate single nucleotide polymorphisms (SNPs) in the murine Terc gene cluster (within genes Lrrc31, Lrriq4 and Mynn) co-varying with aTL in our panel. In a second experiment, we tested the association of these Terc gene cluster variants with liver aTL in an independent panel of eight inbred mice selected based on candidate SNP genotype. This supported our initial finding that Terc gene cluster polymorphisms impact aTL in mice, consistent with data in human populations. This provides support for mice as a model for telomere dynamics, especially for studying mechanisms underlying the association between Terc cluster variants and telomere length. Finally, these data suggest that mechanisms independent of linkage disequilibrium between the Terc/TERC gene cluster and the Terc/TERC gene mediate the cluster's regulation of telomere length.


Subject(s)
Liver/metabolism , Multigene Family , RNA/genetics , Telomerase/genetics , Telomere Homeostasis/genetics , Telomere/genetics , Animals , Genetic Variation , Genotype , Male , Mice, Inbred C57BL , RNA/metabolism , Telomerase/metabolism
9.
Genes Brain Behav ; : e12734, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33797169

ABSTRACT

Cognitive deficits, such as disrupted learning, are a major symptom of nicotine withdrawal. These deficits are heritable, yet their genetic basis is largely unknown. Our lab has developed a mouse model of nicotine withdrawal deficits in learning, using chronic nicotine exposure via osmotic minipumps and fear conditioning. Here, we utilized the BXD genetic reference panel to identify genetic variants underlying nicotine withdrawal deficits in learning. Male and female mice (n = 6-11 per sex per strain, 31 strains) received either chronic saline or nicotine (6.3 mg/kg per day for 12 days), and were then tested for hippocampus-dependent learning deficits using contextual fear conditioning. Quantitative trait locus (QTL) mapping analyses using GeneNetwork identified a significant QTL on Chromosome 4 (82.13 Mb, LRS = 20.03, p < 0.05). Publicly available hippocampal gene expression data were used to identify eight positional candidates (Snacpc3, Mysm1, Rps6, Plaa, Lurap1l, Slc24a2, Hacd4, Ptprd) that overlapped with our behavioral QTL and correlated with our behavioral data. Overall, this study demonstrates that genetic factors impact cognitive deficits during nicotine withdrawal in the BXD recombinant inbred panel and identifies candidate genes for future research.

10.
Neurotoxicol Teratol ; 85: 106972, 2021.
Article in English | MEDLINE | ID: mdl-33727150

ABSTRACT

Parental nicotine exposure can impact phenotypes in unexposed offspring. Our laboratory recently published data showing that nicotine reward and hippocampal gene expression involved in stress pathways were perturbed in F1 offspring of male C57BL/6J mice chronically exposed to nicotine. For the current study, we aimed to further test nicotine and stress-sensitivity phenotypes that may predict vulnerability to nicotine addiction in new cohorts of F1 offspring derived from nicotine-exposed males. We tested locomotor and body temperature sensitivity to acute nicotine administration, serum concentration of nicotine and nicotine metabolites after acute nicotine dosing, and serum corticosterone levels in male and female F1 offspring of nicotine- or saline-exposed males. Paternal nicotine exposure reduced sensitivity to nicotine-induced hypothermia in males, altered nicotine metabolite concentrations in males and females, and reduced serum basal corticosterone levels in females. These findings may point to reduced susceptibility to nicotine addiction-related phenotypes as a result of parental nicotine exposure.


Subject(s)
Corticosterone/blood , Hypothermia/chemically induced , Nicotine/adverse effects , Paternal Exposure/adverse effects , Animals , Female , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nicotine/blood , Nicotine/metabolism , Sex Factors
11.
Neurobiol Learn Mem ; 172: 107234, 2020 07.
Article in English | MEDLINE | ID: mdl-32428585

ABSTRACT

Adolescent alcohol use is a widespread problem in the United States. In both humans and rodents, alcohol can impair learning and memory processes mediated by forebrain areas such as the prefrontal cortex (PFC) and hippocampus (HC). Adolescence is a period in which alcohol use often begins, and it is also a time that can be uniquely sensitive to the detrimental effects of alcohol. Exposure to alcohol during adolescence can cause persisting alterations in PFC and HC neurobiology that are linked to cognitive impairments, including changes in neurogenesis, inflammation, and various neurotransmitter systems in rodent models. Consistent with this, chronic adolescent alcohol exposure can cause PFC-dependent learning impairments that persist into adulthood. Deficits in adult HC-dependent learning after adolescent alcohol exposure have also been reported, but these findings are less consistent. Overall, evidence summarized in this review indicates that adolescent exposure to alcohol can produce long-term detrimental effects on forebrain-dependent cognitive processes.


Subject(s)
Alcoholism/physiopathology , Alcoholism/psychology , Hippocampus/physiopathology , Learning , Prefrontal Cortex/physiopathology , Underage Drinking/psychology , Animals , Cognitive Dysfunction/etiology , Ethanol/administration & dosage , Hippocampus/drug effects , Humans , Learning/drug effects , Mice , Prefrontal Cortex/drug effects , Rats
12.
Horm Behav ; 115: 104557, 2019 09.
Article in English | MEDLINE | ID: mdl-31310760

ABSTRACT

Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Anxiety/drug therapy , Behavior, Animal/physiology , Corticosterone/metabolism , Estrous Cycle/metabolism , Food , Stress, Psychological/drug therapy , Sucrose/pharmacology , Sweetening Agents/pharmacology , Animals , Female , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...