Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(7): e202303558, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38037264

ABSTRACT

Polymorphic forms of organic conjugated small molecules, with their unique molecular shapes, packing arrangements, and interaction patterns, provide an excellent opportunity to uncover how their microstructures influence their observable properties. Ethyl-2-(1-benzothiophene-2-yl)quinoline-4-carboxylate (BZQ) exists as dimorphs with distinct crystal habits - blocks (BZB) and needles (BZN). The crystal forms differ in their molecular arrangements - BZB has a slip-stacked column-like structure in contrast to a zig-zag crystal packing with limited π-overlap in BZN. The BZB crystals characterized by extended π-stacking along [100] demonstrated semiconductor behavior, whereas the BZN, with its zig-zag crystal packing and limited stacking characteristics, was reckoned as an insulator. Monotropically related crystal forms also differ in their nanomechanical properties, with BZB crystals being considerably softer than BZN crystals. This discrepancy in mechanical behavior can be attributed to the distinct molecular arrangements adopted by each crystal form, resulting in unique mechanisms to relieve the strain generated during nanoindentation experiments. Waveguiding experiments on the acicular crystals of BZN revealed the passive waveguiding properties. Excitation of these crystals using a 532 nm laser confirmed the propagation of elastically scattered photons (green) and the subsequent generation of inelastically scattered (orange) photons by the crystals. Further, the dimorphs display dissimilar photoluminescence properties; they are both blue-emissive, but BZN displays twice the quantum yield of BZB. The study underscores the integral role of polymorphism in modulating the mechanical, photophysical, and conducting properties of functional molecular materials. Importantly, our findings reveal the existence of light-emitting crystal polymorphs with varying electric conductivity, a relatively scarce phenomenon in the literature.

2.
Chemistry ; 25(2): 526-537, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30276924

ABSTRACT

Comprehension of the nanomechanical response of crystalline materials requires the understanding of the elastic and plastic deformation mechanisms in terms of the underlying crystal structures. Nanoindentation data were combined with structural and computational inputs to derive a molecular-level understanding of the nanomechanical response in eight prototypical sulfa drug molecular crystals. The magnitude of the modulus, E, was strongly connected to the non-covalent bond features, that is, the bond strength, the relative orientation with the measured crystal facet and their disposition in the crystal lattice. Additional features derived from the current study are the following. Firstly, robust synthons well isolated by weak and dispersive interactions reduce the material stiffness; in contrast, the interweaving of interactions with diverse energetics fortifies the crystal packing. Secondly, mere observation of layered structures with orthogonal distribution of strong and weak interactions is a prerequisite, but inadequate, to attain higher plasticity. Thirdly, interlocked molecular arrangements prevent long-range sliding of molecular planes and, hence, lead to enhanced E values. In a broader perspective, the observations are remarkable in deriving a molecular basis of the mechanical properties of crystalline solids, which can be exploited through crystal engineering for the purposeful design of materials with specific properties.


Subject(s)
Anti-Infective Agents/chemistry , Crystallization , Elasticity , Hardness , Sulfachlorpyridazine/chemistry , Sulfadiazine/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...