Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37609950

ABSTRACT

Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface, the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be accessed via this link (https://rosie.graylab.jhu.edu).


Subject(s)
Proteins , Software , Proteins/chemistry , Web Browser
2.
Nat Commun ; 13(1): 7846, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543826

ABSTRACT

Covalent labeling (CL) in combination with mass spectrometry can be used as an analytical tool to study and determine structural properties of protein-protein complexes. However, data from these experiments is sparse and does not unambiguously elucidate protein structure. Thus, computational algorithms are needed to deduce structure from the CL data. In this work, we present a hybrid method that combines models of protein complex subunits generated with AlphaFold with differential CL data via a CL-guided protein-protein docking in Rosetta. In a benchmark set, the RMSD (root-mean-square deviation) of the best-scoring models was below 3.6 Å for 5/5 complexes with inclusion of CL data, whereas the same quality was only achieved for 1/5 complexes without CL data. This study suggests that our integrated approach can successfully use data obtained from CL experiments to distinguish between nativelike and non-nativelike models.


Subject(s)
Algorithms , Proteins , Protein Conformation , Proteins/chemistry , Mass Spectrometry
3.
J Phys Chem B ; 126(42): 8439-8446, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36251522

ABSTRACT

The combination of deep learning and sequence data has transformed protein structure prediction and modeling, evidenced in the success of AlphaFold (AF). For this reason, many methods have been developed to take advantage of this success in areas where inaccurate structural modeling may limit computational predictiveness. For example, many methods have been developed to predict protein intrinsic disorder from sequence, including our Rosetta ResidueDisorder (RRD) approach. Intrinsically disordered regions in proteins are parts of the sequence that do not form ordered, folded structures under typical physiological conditions. In the original implementation of RRD, Rosetta ab initio models were generated, and disordered regions were predicted based on residue scores (disordered residues typically exist in regions of unfavorable scores). In this work, we show that by (i) replacing the ab initio modeling with AF (using the same scoring and disorder assignment approach) and (ii) updating the score function, the predictiveness improved significantly. Residues were better ranked by the order/disorder, evidenced by an improvement in receiver operating characteristic area-under-the-curve from 0.69 to 0.78 on a large (229 protein) and balanced data set (relatively even ordered versus disordered residues). Finally, the binary prediction accuracy also improved from 62% to 74% on the same data set. Our results show that the combined AF-RRD approach was as good as or better than all existing methods by these metrics (AF-RRD had the highest prediction accuracy).


Subject(s)
Computational Biology , Proteins , Proteins/chemistry , Protein Conformation
4.
Nat Commun ; 13(1): 4377, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902583

ABSTRACT

Ion mobility (IM) mass spectrometry provides structural information about protein shape and size in the form of an orientationally-averaged collision cross-section (CCSIM). While IM data have been used with various computational methods, they have not yet been utilized to predict monomeric protein structure from sequence. Here, we show that IM data can significantly improve protein structure determination using the modelling suite Rosetta. We develop the Rosetta Projection Approximation using Rough Circular Shapes (PARCS) algorithm that allows for fast and accurate prediction of CCSIM from structure. Following successful testing of the PARCS algorithm, we use an integrative modelling approach to utilize IM data for protein structure prediction. Additionally, we propose a confidence metric that identifies near native models in the absence of a known structure. The results of this study demonstrate the ability of IM data to consistently improve protein structure prediction.


Subject(s)
Ion Mobility Spectrometry , Proteins , Algorithms , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Proteins/chemistry
5.
Anal Chem ; 94(29): 10506-10514, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35834801

ABSTRACT

Understanding the relationship between protein structure and experimental data is crucial for utilizing experiments to solve biochemical problems and optimizing the use of sparse experimental data for structural interpretation. Tandem mass spectrometry (MS/MS) can be used with a variety of methods to collect structural data for proteins. One example is surface-induced dissociation (SID), which is used to break apart protein complexes (via a surface collision) into intact subcomplexes and can be performed at multiple laboratory frame SID collision energies. These energy-resolved MS/MS experiments have shown that the profile of the breakages depends on the acceleration energy of the collision. It is possible to extract an appearance energy (AE) from energy-resolved mass spectrometry (ERMS) data, which shows the relative intensity of each type of subcomplex as a function of SID acceleration energy. We previously determined that these AE values for specific interfaces correlated with structural features related to interface strength. In this study, we further examined the structural relationships by developing a method to predict the full ERMS plot from the structure, rather than extracting a single value. First, we noted that for proteins with multiple interface types, we could reproduce the correct shapes of breakdown curves, further confirming previous structural hypotheses. Next, we demonstrated that interface size and energy density (measured using Rosetta) correlated with data derived from the ERMS plot (R2 = 0.71). Furthermore, based on this trend, we used native crystal structures to predict ERMS. The majority of predictions resulted in good agreement, and the average root-mean-square error was 0.20 for the 20 complexes in our data set. We also show that if additional information on cleavage as a function of collision energy could be obtained, the accuracy of predictions improved further. Finally, we demonstrated that ERMS prediction results were better for the native than for inaccurate models in 17/20 cases. An application to run this simulation has been developed in Rosetta, which is freely available for use.


Subject(s)
Tandem Mass Spectrometry , Humans , Computer Simulation , Physical Phenomena , Proteins/chemistry , Tandem Mass Spectrometry/methods
6.
Structure ; 30(2): 313-320.e3, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34739840

ABSTRACT

Hydrogen-deuterium exchange (HDX) measured by nuclear magnetic resonance (NMR) provides structural information for proteins relating to solvent accessibility and flexibility. While this structural information is beneficial, the data cannot be used exclusively to elucidate structures. However, the structural information provided by the HDX-NMR data can be supplemented by computational methods. In previous work, we developed an algorithm in Rosetta to predict structures using qualitative HDX-NMR data (categories of exchange rate). Here we expand on the effort, and utilize quantitative protection factors (PFs) from HDX-NMR for structure prediction. From observed correlations between PFs and solvent accessibility/flexibility measures, we present a scoring function to quantify the agreement with HDX data. Using a benchmark set of 10 proteins, an average improvement of 5.13 Å in root-mean-square deviation (RMSD) is observed for cases of inaccurate Rosetta predictions. Ultimately, seven out of 10 predictions are accurate without including HDX data, and nine out of 10 are accurate when using our PF-based HDX score.


Subject(s)
Computational Biology/methods , Deuterium Exchange Measurement/methods , Proteins/chemistry , Algorithms , Models, Molecular , Protein Conformation
7.
J Med Chem ; 64(20): 15214-15249, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34614347

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound 79. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable in vitro cardiovascular safety profile, and in vivo efficacy in a murine model of methicillin-resistant Staphylococcus aureus infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dioxanes/pharmacology , Enzyme Inhibitors/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Dioxanes/chemical synthesis , Dioxanes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
8.
Anal Chem ; 93(21): 7596-7605, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33999617

ABSTRACT

A variety of techniques involving the use of mass spectrometry (MS) have been developed to obtain structural information on proteins and protein complexes. One example of these techniques, surface-induced dissociation (SID), has been used to study the oligomeric state and connectivity of protein complexes. Recently, we demonstrated that appearance energies (AE) could be extracted from SID experiments and that they correlate with structural features of specific protein-protein interfaces. While SID AE provides some structural information, the AE data alone are not sufficient to determine the structures of the complexes. For this reason, we sought to supplement the data with computational modeling, through protein-protein docking. In a previous study, we demonstrated that the scoring of structures generated from protein-protein docking could be improved with the inclusion of SID data; however, this work relied on knowledge of the correct tertiary structure and only built full complexes for a few cases. Here, we performed docking using input structures that require less prior knowledge, using homology models, unbound crystal structures, and bound+perturbed crystal structures. Using flexible ensemble docking (to build primarily subcomplexes from an ensemble of backbone structures), the RMSD100 of all (15/15) predicted structures using the combined Rosetta, cryo-electron microscopy (cryo-EM), and SID score was less than 4 Å, compared to only 7/15 without SID and cryo-EM. Symmetric docking (which used symmetry to build full complexes) resulted in predicted structures with RMSD100 less than 4 Å for 14/15 cases with experimental data, compared to only 5/15 without SID and cryo-EM. Finally, we also developed a confidence metric for which all (26/26) proteins flagged as high confidence were accurately predicted.


Subject(s)
Proteins , Cryoelectron Microscopy , Mass Spectrometry , Protein Conformation
9.
J Chem Theory Comput ; 17(4): 2619-2629, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33780620

ABSTRACT

Amide hydrogen-deuterium exchange (HDX) has long been used to determine regional flexibility and binding sites in proteins; however, the data are too sparse for full structural characterization. Experiments that measure HDX rates, such as HDX-NMR, have far higher throughput compared to structure determination via X-ray crystallography, cryo-EM, or a full suite of NMR experiments. Data from HDX-NMR experiments encode information on the protein structure, making HDX a prime candidate to be supplemented by computational algorithms for protein structure prediction. We have developed a methodology to incorporate HDX-NMR data into ab initio protein structure prediction using the Rosetta software framework to predict structures based on experimental agreement. To demonstrate the efficacy of our algorithm, we examined 38 proteins with HDX-NMR data available, comparing the predicted model with and without the incorporation of HDX data into scoring. The root-mean-square deviation (rmsd, a measure of the average atomic distance between superimposed models) of the predicted model improved by 1.42 Å on average after incorporating the HDX-NMR data into scoring. The average rmsd improvement for the proteins where the selected model rmsd changed after incorporating HDX data was 3.63 Å, including one improvement of more than 11 Å and seven proteins improving by greater than 4 Å, with 12/15 proteins improving overall. Additionally, for independent verification, two proteins that were not part of the original benchmark were scored including HDX data, with a dramatic improvement of the selected model rmsd of nearly 9 Å for one of the proteins. Moreover, we have developed a confidence metric allowing us to successfully identify near-native models in the absence of a native structure. Improvement in model selection with a strong confidence measure demonstrates that protein structure prediction with HDX-NMR is a powerful tool which can be performed with minimal additional computational strain and expense.


Subject(s)
Amides/chemistry , Deuterium Exchange Measurement , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Binding Sites , Models, Molecular , Protein Conformation
10.
ACS Med Chem Lett ; 11(12): 2446-2454, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335666

ABSTRACT

In recent years, novel bacterial topoisomerase inhibitors (NBTIs) have been developed as future antibacterials for treating multidrug-resistant bacterial infections. A series of dioxane-linked NBTIs with an amide moiety has been synthesized and evaluated. Compound 3 inhibits DNA gyrase, induces the formation of single strand breaks to bacterial DNA, and achieves potent antibacterial activity against a variety of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Optimization of this series of analogues led to the discovery of a subseries of compounds (22-25) with more potent anti-MRSA activity, dual inhibition of DNA gyrase and topoisomerase IV, and the ability to induce double strand breaks through inhibition of S. aureus DNA gyrase.

11.
J Chem Phys ; 153(24): 240901, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33380110

ABSTRACT

Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.


Subject(s)
Proteins/chemistry , Chemistry Techniques, Analytical , Models, Molecular
12.
ACS Cent Sci ; 5(8): 1330-1341, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31482115

ABSTRACT

Recently, mass spectrometry (MS) has become a viable method for elucidation of protein structure. Surface-induced dissociation (SID), colliding multiply charged protein complexes or other ions with a surface, has been paired with native MS to provide useful structural information such as connectivity and topology for many different protein complexes. We recently showed that SID gives information not only on connectivity and topology but also on relative interface strengths. However, SID has not yet been coupled with computational structure prediction methods that could use the sparse information from SID to improve the prediction of quaternary structures, i.e., how protein subunits interact with each other to form complexes. Protein-protein docking, a computational method to predict the quaternary structure of protein complexes, can be used in combination with subunit structures from X-ray crystallography and NMR in situations where it is difficult to obtain an experimental structure of an entire complex. While de novo structure prediction can be successful, many studies have shown that inclusion of experimental data can greatly increase prediction accuracy. In this study, we show that the appearance energy (AE, defined as 10% fragmentation) extracted from SID can be used in combination with Rosetta to successfully evaluate protein-protein docking poses. We developed an improved model to predict measured SID AEs and incorporated this model into a scoring function that combines the RosettaDock scoring function with a novel SID scoring term, which quantifies agreement between experiments and structures generated from RosettaDock. As a proof of principle, we tested the effectiveness of these restraints on 57 systems using ideal SID AE data (AE determined from crystal structures using the predictive model). When theoretical AEs were used, the RMSD of the selected structure improved or stayed the same in 95% of cases. When experimental SID data were incorporated on a different set of systems, the method predicted near-native structures (less than 2 Å root-mean-square deviation, RMSD, from native) for 6/9 tested cases, while unrestrained RosettaDock (without SID data) only predicted 3/9 such cases. Score versus RMSD funnel profiles were also improved when SID data were included. Additionally, we developed a confidence measure to evaluate predicted model quality in the absence of a crystal structure.

13.
J Mol Biol ; 431(22): 4497-4513, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31493410

ABSTRACT

Salmonellais a foodborne pathogen that causes annually millions of cases of salmonellosis globally, yet Salmonella-specific antibacterials are not available. During inflammation, Salmonella utilizes the Amadori compound fructose-asparagine (F-Asn) as a nutrient through the successive action of three enzymes, including the terminal FraB deglycase. Salmonella mutants lacking FraB are highly attenuated in mouse models of inflammation due to the toxic build-up of the substrate 6-phosphofructose-aspartate (6-P-F-Asp). This toxicity makes Salmonella FraB an appealing drug target, but there is currently little experimental information about its catalytic mechanism. Therefore, we sought to test our postulated mechanism for the FraB-catalyzed deglycation of 6-P-F-Asp (via an enaminol intermediate) to glucose-6-phosphate and aspartate. A FraB homodimer model generated by RosettaCM was used to build substrate-docked structures that, coupled with sequence alignment of FraB homologs, helped map a putative active site. Five candidate active-site residues-including three expected to participate in substrate binding-were mutated individually and characterized. Native mass spectrometry and ion mobility were used to assess collision cross sections and confirm that the quaternary structure of the mutants mirrored the wild type, and that there are two active sites/homodimer. Our biochemical studies revealed that FraB Glu214Ala, Glu214Asp, and His230Ala were inactive in vitro, consistent with deprotonated-Glu214 and protonated-His230 serving as a general base and a general acid, respectively. Glu214Ala or His230Ala introduced into the Salmonella chromosome by CRISPR/Cas9-mediated genome editing abolished growth on F-Asn. Results from our computational and experimental approaches shed light on the catalytic mechanism of Salmonella FraB and of phosphosugar deglycases in general.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrolases/chemistry , Hydrolases/metabolism , Salmonella/enzymology , Bacterial Proteins/genetics , Gene Editing , Hydrolases/genetics , Mass Spectrometry , Mutation/genetics , Substrate Specificity
14.
J Phys Chem B ; 123(33): 7103-7112, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31411026

ABSTRACT

Many proteins contain regions of intrinsic disorder, not folding into unique, stable conformations. Numerous experimental methods have been developed to measure the disorder of all or select residues. In the absence of experimental data, computational methods are often utilized to identify these disordered regions and thus gain a better understanding of both structure and function. Many freely available computational methods have been developed to predict regions of intrinsic disorder from the primary sequence of a protein, including our recently developed Rosetta ResidueDisorder. While these methods are very useful, they are only designed to predict intrinsic disorder from the sequence. However, it would be useful to have a method that could also measure intrinsic disorder directly from structure. Such a method might also be used to identify changes in the structure of systems that can transition from folded to unfolded or vice versa, even systems that are not intrinsically disordered. Here we extended the capabilities of Rosetta ResidueDisorder to measure the intrinsic disorder from the coordinates of a single conformation of a protein. As a proof of principle, we show that ResidueDisorder can measure the intrinsic disorder from the coordinates with a higher accuracy (69.2%) than when predicted from sequence (65.4%) using a benchmark set of 229 proteins, showing that intrinsic disorder can be measured accurately from single structures over a large range of intrinsic disorder (0-100%). Additionally, we used ResidueDisorder to analyze unfolding trajectories of 12 fast-folding, nonintrinsically disordered proteins generated using molecular dynamics (MD), specifically steered MD (SMD), high-temperature MD, and accelerated MD (aMD) as well as long-time scale folding/unfolding trajectories. Using ResidueDisorder, a clear correlation between RMSD with respect to the native structure and measured fraction of denatured residues was observed. Finally, we introduced methods to predict folding/unfolding transitions as well as a native-like structure in the absence of a crystal structure from folding/unfolding MD trajectories. Rosetta ResidueDisorder is available as an application in the Rosetta software suite with the addition of new capabilities for directly identifying denatured regions and predicting events.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Animals , Databases, Protein , Humans , Molecular Dynamics Simulation , Protein Conformation , Protein Denaturation , Protein Folding , Protein Unfolding , Software
15.
ACS Infect Dis ; 5(7): 1115-1128, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31041863

ABSTRACT

The development of new therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) is needed to counteract the significant threat that MRSA presents to human health. Novel inhibitors of DNA gyrase and topoisomerase IV (TopoIV) constitute one highly promising approach, but continued optimization is required to realize the full potential of this class of antibiotics. Herein, we report further studies on a series of dioxane-linked derivatives, demonstrating improved antistaphylococcal activity and reduced hERG inhibition. A subseries of analogues also possesses enhanced inhibition of the secondary target, TopoIV.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , DNA Gyrase/metabolism , Dioxanes/chemistry , Methicillin-Resistant Staphylococcus aureus/enzymology , Topoisomerase Inhibitors/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA Gyrase/chemistry , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/chemistry , DNA Topoisomerase IV/metabolism , Down-Regulation , ERG1 Potassium Channel/metabolism , Humans , K562 Cells , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protein Binding , Structure-Activity Relationship , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
16.
Proc Natl Acad Sci U S A ; 116(17): 8143-8148, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30944216

ABSTRACT

To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology. Here we report a native mass spectrometry (MS)-based method to characterize subunit interactions in globular protein complexes. We demonstrate that dissociation of protein complexes by surface collisions, at the lower end of the typical surface-induced dissociation (SID) collision energy range, consistently cleaves the weakest protein:protein interfaces, producing products that are reflective of the known structure. We present here combined results for multiple complexes as a training set, two validation cases, and four computational models. We show that SID appearance energies can be predicted from structures via a computationally derived expression containing three terms (number of residues in a given interface, unsatisfied hydrogen bonds, and a rigidity factor).


Subject(s)
Proteins/chemistry , Computer Simulation , Hydrogen Bonding , Mass Spectrometry , Protein Binding , Surface Properties
17.
J Phys Chem B ; 122(14): 3920-3930, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29595057

ABSTRACT

Although many proteins necessitate well-folded structures to properly instigate their biological functions, a large fraction of functioning proteins contain regions-known as intrinsically disordered protein regions-where stable structures are not likely to form. Notable functional roles of intrinsically disordered proteins are in transcriptional regulation, translation, and cellular signal transduction. Moreover, intrinsically disordered protein regions are highly abundant in many proteins associated with various human diseases, therefore these segments have become attractive drug targets for potential therapeutics. Over the past decades, numerous computational methods have been developed to accurately predict disordered regions of proteins. Here we introduce a user-friendly and reliable approach for the prediction of disordered protein regions using the structure prediction software Rosetta. Using 245 proteins from a benchmark data set (16 DisProt database proteins) and a test data set (229 proteins with NMR data), we use Rosetta to predict the global protein structures and then show that there is a statistically significant difference between Rosetta scores in disordered and ordered regions, with scores being less favorable in disordered regions. Furthermore, the difference in scores between ordered and disordered protein regions is sufficient to accurately identify disordered protein regions. As a result, our Rosetta ResidueDisorder method (benchmark data set prediction accuracy of 71.77% and independent test data set prediction accuracy of 65.37%) outperformed other established disorder prediction tools and did not exhibit a biased prediction toward either ordered or disordered regions. To facilitate usage, a Rosetta application has been developed for the Rosetta ResidueDisorder method.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Protein Folding , Software , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...