Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Psychiatry ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744992

ABSTRACT

High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.

2.
Psychiatry Res ; 335: 115867, 2024 May.
Article in English | MEDLINE | ID: mdl-38537595

ABSTRACT

The 3q29 deletion (3q29Del) is a copy number variant (CNV) with one of the highest effect sizes for psychosis-risk (>40-fold). Systematic research offers avenues for elucidating mechanism; however, compared to CNVs like 22q11.2Del, 3q29Del remains understudied. Emerging findings indicate that posterior fossa abnormalities are common among carriers, but their clinical relevance is unclear. We report the first in-depth evaluation of psychotic symptoms in participants with 3q29Del (N=23), using the Structured Interview for Psychosis-Risk Syndromes, and compare this profile to 22q11.2Del (N=31) and healthy controls (N=279). We also explore correlations between psychotic symptoms and posterior fossa abnormalities. Cumulatively, 48% of the 3q29Del sample exhibited a psychotic disorder or attenuated positive symptoms, with a subset meeting criteria for clinical high-risk. 3q29Del had more severe ratings than controls on all domains and only exhibited less severe ratings than 22q11.2Del in negative symptoms; ratings demonstrated select sex differences but no domain-wise correlations with IQ. An inverse relationship was identified between positive symptoms and cerebellar cortex volume in 3q29Del, documenting the first clinically-relevant neuroanatomical connection in this syndrome. Our findings characterize the profile of psychotic symptoms in the largest 3q29Del sample reported to date, contrast with another high-impact CNV, and highlight cerebellar involvement in psychosis-risk.


Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Schizophrenia , Humans , Female , Male , Schizophrenia/complications , Schizophrenia/genetics , DNA Copy Number Variations/genetics , Psychotic Disorders/complications , Psychotic Disorders/genetics , Psychotic Disorders/diagnosis
3.
Clin Psychol Sci ; 11(5): 801-818, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37981950

ABSTRACT

Reduced hippocampal volume (HV) is an established brain morphological feature of psychiatric conditions. HV is associated with brain connectivity in humans and non-human animals and altered connectivity is associated with risk for psychiatric illness. Associations between HV and connectivity remain poorly characterized in humans, and especially in phases of psychiatric illness that precede disease onset. This study examined associations between HV and hippocampal functional connectivity (FC) during rest in 141 healthy controls and 248 individuals at-risk for psychosis. Significant inverse associations between HV and hippocampal FC with the inferior parietal lobe (IPL) and thalamus were observed. Select associations between hippocampal FC and HV were moderated by diagnostic group. Significant moderation results shifted from implicating the IPL to the temporal pole after excluding participants on antipsychotic medication. Considered together, this work implicates hippocampal FC with the temporoparietal junction, within a specialized subsystem of the default mode network, as sensitive to HV.

4.
Sci Adv ; 9(33): eadh0558, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37585521

ABSTRACT

The 1.6-megabase deletion at chromosome 3q29 (3q29Del) is the strongest identified genetic risk factor for schizophrenia, but the effects of this variant on neurodevelopment are not well understood. We interrogated the developing neural transcriptome in two experimental model systems with complementary advantages: isogenic human cortical organoids and isocortex from the 3q29Del mouse model. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution. Systematic pathway analysis implicated dysregulation of mitochondrial function and energy metabolism. These molecular signatures were supported by analysis of oxidative phosphorylation protein complex expression in mouse brain and assays of mitochondrial function in engineered cell lines, which revealed a lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. Together, these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species.


Subject(s)
Intellectual Disability , Neocortex , Schizophrenia , Child , Humans , Animals , Mice , Aged , Schizophrenia/genetics , Chromosome Deletion , Developmental Disabilities/complications , Developmental Disabilities/genetics
5.
Psychopharmacology (Berl) ; 240(6): 1235-1246, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37045988

ABSTRACT

RATIONALE: Drug- and alcohol-related motor vehicle accidents are a leading cause of morbidity and mortality worldwide. Compared to alcohol, less is known about the effects of cannabis on driving and even less about their combined effects. OBJECTIVE: To characterize the combined and separate effects of ethanol and tetrahydrocannabinol (THC) on perceived ability to drive, subjective effects, and simulated driving. METHODS: In a within-subject (crossover), randomized, placebo-controlled, double-blind, 2 × 2 design, the effects of oral THC (10 mg [dronabinol] or placebo) and low-dose intravenous ethanol (clamped at BAC 0.04% or placebo) on perceived ability to drive, simulated driving (standard deviation of lateral position [SDLP]), subjective effects (e.g., "high"), and physiological effects (e.g., heart rate) were studied in healthy humans (n = 18). RESULTS: Subjects reported reductions in perceived ability to drive (THC < ethanol < combination) which persisted for ~ 6 h (placebo = ethanol, THC < combination). Ethanol and THC produced synergistic effects on heart rate, significant differences compared to either drug alone on perceived ability to drive and feeling states of intoxication (e.g., high), as well increases in SDLP compared to placebo. CONCLUSIONS: Perceived ability to drive is reduced under the influence of THC against the backdrop of blood alcohol levels that are below the legal limit. People should be aware that the effects of oral THC on driving may persist for up to six hours from administration. Findings are relevant to the increasingly common practice of combining alcohol and cannabinoids and the effects on driving.


Subject(s)
Automobile Driving , Hallucinogens , Humans , Dronabinol , Ethanol , Self Report , Psychomotor Performance , Hallucinogens/pharmacology , Double-Blind Method
6.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-36747819

ABSTRACT

Recent advances in the genetics of schizophrenia (SCZ) have identified rare variants that confer high disease risk, including a 1.6 Mb deletion at chromosome 3q29 with a staggeringly large effect size (O.R. > 40). Understanding the impact of the 3q29 deletion (3q29Del) on the developing CNS may therefore lead to insights about the pathobiology of schizophrenia. To gain clues about the molecular and cellular perturbations caused by the 3q29 deletion, we interrogated transcriptomic effects in two experimental model systems with complementary advantages: isogenic human forebrain cortical organoids and isocortex from the 3q29Del mouse model. We first created isogenic lines by engineering the full 3q29Del into an induced pluripotent stem cell line from a neurotypical individual. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 months and 12 months, as well as day p7 perinatal mouse isocortex, all at single cell resolution. Differential expression analysis by genotype in each cell-type cluster revealed that more than half of the differentially expressed genes identified in mouse cortex were also differentially expressed in human cortical organoids, and strong correlations were observed in mouse-human differential gene expression across most major cell-types. We systematically filtered differentially expressed genes to identify changes occurring in both model systems. Pathway analysis on this filtered gene set implicated dysregulation of mitochondrial function and energy metabolism, although the direction of the effect was dependent on developmental timepoint. Transcriptomic changes were validated at the protein level by analysis of oxidative phosphorylation protein complexes in mouse brain tissue. Assays of mitochondrial function in human heterologous cells further confirmed robust mitochondrial dysregulation in 3q29Del cells, and these effects are partially recapitulated by ablation of the 3q29Del gene PAK2 . Taken together these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species. These results converge with data from other rare SCZ-associated variants as well as idiopathic schizophrenia, suggesting that mitochondrial dysfunction may be a significant but overlooked contributing factor to the development of psychotic disorders. This cross-species scRNA-seq analysis of the SCZ-associated 3q29 deletion reveals that this copy number variant may produce early and persistent changes in cellular metabolism that are relevant to human neurodevelopment.

7.
Schizophr Bull ; 49(2): 350-363, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36394426

ABSTRACT

BACKGROUND: The clinical high-risk (CHR) period offers a temporal window into neurobiological deviations preceding psychosis onset, but little attention has been given to regions outside the cerebrum in large-scale studies of CHR. Recently, the North American Prodrome Longitudinal Study (NAPLS)-2 revealed altered functional connectivity of the cerebello-thalamo-cortical circuitry among individuals at CHR; however, cerebellar morphology remains underinvestigated in this at-risk population, despite growing evidence of its involvement in psychosis. STUDY DESIGN: In this multisite study, we analyzed T1-weighted magnetic resonance imaging scans obtained from N = 469 CHR individuals (61% male, ages = 12-36 years) and N = 212 healthy controls (52% male, ages = 12-34 years) from NAPLS-2, with a focus on cerebellar cortex and white matter volumes separately. Symptoms were rated by the Structured Interview for Psychosis-Risk Syndromes (SIPS). The outcome by two-year follow-up was categorized as in-remission, symptomatic, prodromal-progression, or psychotic. General linear models were used for case-control comparisons and tests for volumetric associations with baseline SIPS ratings and clinical outcomes. STUDY RESULTS: Cerebellar cortex and white matter volumes differed between the CHR and healthy control groups at baseline, with sex moderating the difference in cortical volumes, and both sex and age moderating the difference in white matter volumes. Baseline ratings for major psychosis-risk dimensions as well as a clinical outcome at follow-up had tissue-specific associations with cerebellar volumes. CONCLUSIONS: These findings point to clinically relevant deviations in cerebellar cortex and white matter structures among CHR individuals and highlight the importance of considering the complex interplay between sex and age when studying the neuromaturational substrates of psychosis risk.


Subject(s)
Psychotic Disorders , White Matter , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Age Factors , Longitudinal Studies , Prodromal Symptoms , Risk Factors
8.
Transl Psychiatry ; 11(1): 357, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131099

ABSTRACT

The 3q29 deletion (3q29Del) confers high risk for schizophrenia and other neurodevelopmental and psychiatric disorders. However, no single gene in this interval is definitively associated with disease, prompting the hypothesis that neuropsychiatric sequelae emerge upon loss of multiple functionally-connected genes. 3q29 genes are unevenly annotated and the impact of 3q29Del on the human neural transcriptome is unknown. To systematically formulate unbiased hypotheses about molecular mechanisms linking 3q29Del to neuropsychiatric illness, we conducted a systems-level network analysis of the non-pathological adult human cortical transcriptome and generated evidence-based predictions that relate 3q29 genes to novel functions and disease associations. The 21 protein-coding genes located in the interval segregated into seven clusters of highly co-expressed genes, demonstrating both convergent and distributed effects of 3q29Del across the interrogated transcriptomic landscape. Pathway analysis of these clusters indicated involvement in nervous-system functions, including synaptic signaling and organization, as well as core cellular functions, including transcriptional regulation, posttranslational modifications, chromatin remodeling, and mitochondrial metabolism. Top network-neighbors of 3q29 genes showed significant overlap with known schizophrenia, autism, and intellectual disability-risk genes, suggesting that 3q29Del biology is relevant to idiopathic disease. Leveraging "guilt by association", we propose nine 3q29 genes, including one hub gene, as prioritized drivers of neuropsychiatric risk. These results provide testable hypotheses for experimental analysis on causal drivers and mechanisms of the largest known genetic risk factor for schizophrenia and highlight the study of normal function in non-pathological postmortem tissue to further our understanding of psychiatric genetics, especially for rare syndromes like 3q29Del, where access to neural tissue from carriers is unavailable or limited.


Subject(s)
Intellectual Disability , Transcriptome , Adult , Child , Chromosome Deletion , Developmental Disabilities/genetics , Humans , Intellectual Disability/genetics , Phenotype
9.
Genet Med ; 23(5): 872-880, 2021 05.
Article in English | MEDLINE | ID: mdl-33564151

ABSTRACT

PURPOSE: To understand the consequences of the 3q29 deletion on medical, neurodevelopmental, psychiatric, brain structural, and neurological sequalae by systematic evaluation of affected individuals. To develop evidence-based recommendations using these data for effective clinical care. METHODS: Thirty-two individuals with the 3q29 deletion were evaluated using a defined phenotyping protocol and standardized data collection instruments. RESULTS: Medical manifestations were varied and reported across nearly every organ system. The most severe manifestations were congenital heart defects (25%) and the most common were gastrointestinal symptoms (81%). Physical examination revealed a high proportion of musculoskeletal findings (81%). Neurodevelopmental phenotypes represent a significant burden and include intellectual disability (34%), autism spectrum disorder (38%), executive function deficits (46%), and graphomotor weakness (78%). Psychiatric illness manifests across the lifespan with psychosis prodrome (15%), psychosis (20%), anxiety disorders (40%), and attention deficit-hyperactivity disorder (ADHD) (63%). Neuroimaging revealed structural anomalies of the posterior fossa, but on neurological exam study subjects displayed only mild or moderate motor vulnerabilities. CONCLUSION: By direct evaluation of 3q29 deletion study subjects, we document common features of the syndrome, including a high burden of neurodevelopmental and neuropsychiatric phenotypes. Evidence-based recommendations for evaluation, referral, and management are provided to help guide clinicians in the care of 3q29 deletion patients.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Psychotic Disorders , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Child , Chromosome Deletion , Developmental Disabilities/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...