Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 271(3): 1204-1212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37917234

ABSTRACT

Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) is an hereditary autosomal recessive disease. Recent studies propose including chronic cough (CC) as a symptom of CANVAS. For 10 patients with CANVAS as genetically confirmed by biallelic expansion of the AAGG repeat motif (AAGGGexp) in intron 2 of replication factor C subunit 1 (RFC1), our aim was, as a multidisciplinary team, to describe clinical and functional characteristics and possible causes of CC following European Respiratory Society (ERS) recommendations, and to evaluate CC impact on quality of life (QoL) using self-administered questionnaires (Cough Severity Diary, Leicester Cough Questionnaire, Discrete Emotions Questionnaire, and EQ-5D-5L). In all 10 patients, the CC was a dry cough that developed several years prior to the neurological symptoms (mean 14.2 years); 7 patients had symptoms compatible with gastroesophageal reflux (GER), 5 with pathological GER diagnosed by 24-h esophageal pH testing, and 6 patients had impaired esophageal motility diagnosed by high-resolution esophageal manometry, most frequently ineffective peristalsis. Although further studies are required for confirmation, we conclude that CC may be a characteristic prodrome of CANVAS and may be related to GER and esophageal disorders. Furthermore, CC affects patients' QoL, especially in the psychosocial sphere.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Vestibular Diseases , Humans , Cerebellar Ataxia/diagnosis , Bilateral Vestibulopathy/complications , Bilateral Vestibulopathy/diagnosis , Quality of Life , Chronic Cough , Vestibular Diseases/complications , Vestibular Diseases/diagnosis , Cough/etiology
2.
Neuromuscul Disord ; 33(12): 983-987, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016875

ABSTRACT

Welander distal myopathy typically manifests in late adulthood and is caused by the founder TIA1 c.1150G>A (p.Glu384Lys) variant in families of Swedish and Finnish descent. Recently, a similar phenotype has been attributed to the digenic inheritance of TIA1 c.1070A>G (p.Asn357Ser) and SQSTM1 c.1175C>T (p.Pro392Leu) variants. We describe two unrelated Spanish patients presenting with slowly progressive gait disturbance, distal-predominant weakness, and mildly elevated creatine kinase (CK) levels since their 6th decade. Electromyography revealed abnormal spontaneous activity and a myopathic pattern. Muscle magnetic resonance imaging (MRI) showed marked fatty replacement in distal leg muscles. A muscle biopsy, performed on one patient, revealed myopathic changes with rimmed vacuoles. Both patients carried the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variants. Digenic inheritance is supported by evidence from unrelated pedigrees and a plausible biological interaction between both proteins in protein quality control processes. Recent functional studies and additional case descriptions further support this. Clinical suspicion is necessary to seek both variants.


Subject(s)
Distal Myopathies , Muscular Diseases , Adult , Humans , Distal Myopathies/pathology , Electromyography , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Sequestosome-1 Protein/genetics , T-Cell Intracellular Antigen-1/genetics
3.
Neuromuscul Disord ; 33(4): 319-323, 2023 04.
Article in English | MEDLINE | ID: mdl-36893608

ABSTRACT

Nemaline myopathy (NEM) type 10, caused by biallelic mutations in LMOD3, is a severe congenital myopathy clinically characterized by generalized hypotonia and muscle weakness, respiratory insufficiency, joint contractures, and bulbar weakness. Here, we describe a family with two adult patients presenting mild nemaline myopathy due to a novel homozygous missense variant in LMOD3. Both patients presented mild delayed motor milestones, frequent falls during infancy, prominent facial weakness and mild muscle weakness in the four limbs. Muscle biopsy showed mild myopathic changes and small nemaline bodies in a few fibers. A neuromuscular gene panel revealed a homozygous missense variant in LMOD3 that co-segregated with the disease in the family (NM_198271.4: c.1030C>T; p.Arg344Trp). The patients described here provide evidence of the phenotype-genotype correlation, suggesting that non-truncating variants in LMOD3 lead to milder phenotypes of NEM type 10.


Subject(s)
Myopathies, Nemaline , Humans , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Mutation, Missense , Muscle Weakness/genetics , Muscle Weakness/pathology , Phenotype , Mutation
4.
J Med Genet ; 60(6): 615-619, 2023 06.
Article in English | MEDLINE | ID: mdl-36535754

ABSTRACT

BACKGROUND: Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. METHODS: RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. RESULTS: We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. CONCLUSION: These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , RNA, Messenger/genetics , Mutation , Multiplex Polymerase Chain Reaction
5.
Genome Res ; 31(8): 1325-1336, 2021 08.
Article in English | MEDLINE | ID: mdl-34290042

ABSTRACT

Tissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We find that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, whereas housekeeping genes are more often controlled by intergenic enhancers, common to many tissues. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, whereas the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.


Subject(s)
Embryonic Stem Cells , Enhancer Elements, Genetic , Embryonic Stem Cells/metabolism , Genes, Essential , Introns/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...