Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
ArXiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38764588

ABSTRACT

This submission comprises the proceedings of the 1st Virtual Imaging Trials in Medicine conference, organized by Duke University on April 22-24, 2024. The listed authors serve as the program directors for this conference. The VITM conference is a pioneering summit uniting experts from academia, industry and government in the fields of medical imaging and therapy to explore the transformative potential of in silico virtual trials and digital twins in revolutionizing healthcare. The proceedings are categorized by the respective days of the conference: Monday presentations, Tuesday presentations, Wednesday presentations, followed by the abstracts for the posters presented on Monday and Tuesday.

2.
Article in English | MEDLINE | ID: mdl-38626754

ABSTRACT

OBJECTIVE: Different methods can be used to condition imaging systems for clinical use. The purpose of this study was to assess how these methods complement one another in evaluating a system for clinical integration of an emerging technology, photon-counting computed tomography (PCCT), for thoracic imaging. METHODS: Four methods were used to assess a clinical PCCT system (NAEOTOM Alpha; Siemens Healthineers, Forchheim, Germany) across 3 reconstruction kernels (Br40f, Br48f, and Br56f). First, a phantom evaluation was performed using a computed tomography quality control phantom to characterize noise magnitude, spatial resolution, and detectability. Second, clinical images acquired using conventional and PCCT systems were used for a multi-institutional reader study where readers from 2 institutions were asked to rank their preference of images. Third, the clinical images were assessed in terms of in vivo image quality characterization of global noise index and detectability. Fourth, a virtual imaging trial was conducted using a validated simulation platform (DukeSim) that models PCCT and a virtual patient model (XCAT) with embedded lung lesions imaged under differing conditions of respiratory phase and positional displacement. Using known ground truth of the patient model, images were evaluated for quantitative biomarkers of lung intensity histograms and lesion morphology metrics. RESULTS: For the physical phantom study, the Br56f kernel was shown to have the highest resolution despite having the highest noise and lowest detectability. Readers across both institutions preferred the Br56f kernel (71% first rank) with a high interclass correlation (0.990). In vivo assessments found superior detectability for PCCT compared with conventional computed tomography but higher noise and reduced detectability with increased kernel sharpness. For the virtual imaging trial, Br40f was shown to have the best performance for histogram measures, whereas Br56f was shown to have the most precise and accurate morphology metrics. CONCLUSION: The 4 evaluation methods each have their strengths and limitations and bring complementary insight to the evaluation of PCCT. Although no method offers a complete answer, concordant findings between methods offer affirmatory confidence in a decision, whereas discordant ones offer insight for added perspective. Aggregating our findings, we concluded the Br56f kernel best for high-resolution tasks and Br40f for contrast-dependent tasks.

3.
Eur J Radiol ; 171: 111279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194843

ABSTRACT

OBJECTIVES: To assess perceptual benefits provided by the improved spatial resolution and noise performance of deep silicon photon-counting CT (Si-PCCT) over conventional energy-integrating CT (ECT) using polychromatic images for various clinical tasks and anatomical regions. MATERIALS AND METHODS: Anthropomorphic, computational models were developed for lungs, liver, inner ear, and head-and-neck (H&N) anatomies. These regions included specific abnormalities such as lesions in the lungs and liver, and calcified plaques in the carotid arteries. The anatomical models were imaged using a scanner-specific CT simulation platform (DukeSim) modeling a Si-PCCT prototype and a conventional ECT system at matched dose levels. The simulated polychromatic projections were reconstructed with matched in-plane resolutions using manufacturer-specific software. The reconstructed pairs of images were scored by radiologists to gauge the task-specific perceptual benefits provided by Si-PCCT compared to ECT based on visualization of anatomical and image quality features. The scores were standardized as z-scores for minimizing inter-observer variability and compared between the systems for evidence of statistically significant improvement (one-sided Wilcoxon rank-sum test with a significance level of 0.05) in perceptual performance for Si-PCCT. RESULTS: Si-PCCT offered favorable image quality and improved visualization capabilities, leading to mean improvements in task-specific perceptual performance over ECT for most tasks. The improvements for Si-PCCT were statistically significant for the visualization of lung lesion (0.08 ± 0.89 vs. 0.90 ± 0.48), liver lesion (-0.64 ± 0.37 vs. 0.95 ± 0.55), and soft tissue structures (-0.47 ± 0.90 vs. 0.33 ± 1.24) and cochlea (-0.47 ± 0.80 vs. 0.38 ± 0.62) in inner ear. CONCLUSIONS: Si-PCCT exhibited mean improvements in task-specific perceptual performance over ECT for most clinical tasks considered in this study, with statistically significant improvement for 6/20 tasks. The perceptual performance of Si-PCCT is expected to improve further with availability of spectral information and reconstruction kernels optimized for high resolution provided by smaller pixel size of Si-PCCT. The outcomes of this study indicate the positive potential of Si-PCCT for benefiting routine clinical practice through improved image quality and visualization capabilities.


Subject(s)
Photons , Silicon , Humans , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Computer Simulation
4.
Med Phys ; 51(1): 103-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37962008

ABSTRACT

BACKGROUND: Studies of tin spectral filtration have demonstrated potential in reducing radiation dose while maintaining image quality for unenhanced computed tomography (CT) scans. The extent of dose reduction, however, was commonly measured using the change in the scanner's reported CTDIvol . This method does not account for how tin filtration affects patient organ and effective dose. PURPOSE: To investigate the effect of tin filtration on patient organ and effective dose for CT Lung Cancer Screening (LCS) and CT Colonography (CTC). METHODS: A previously-developed Monte Carlo program was adapted to model a 96-row CT scanner (Somatom Force, Siemens Healthineers) with tin filtration capabilities at 100 kV (100Sn) and 150 kV (150Sn). The program was then validated using experimental CTDIvol measurements at all available kV (70-150 kV) and tin-filtered kV options (100Sn and 150Sn). After validation, the program simulated LCS scans of the chest and CTC scan of the abdomen-pelvis for a population of 53 computational patient models from the extended cardiac-torso family. Each scan was performed using three different spectra: 120 kV, 100Sn, and 150Sn. CTDIvol -normalized organ doses and DLP-normalized effective doses, commonly referred to as dose conversion factors, were compared between the different spectra. RESULTS: For all LCS and CTC scans, CTDIvol -normalized organ doses and DLP-normalized effective doses increased with increasing beam hardness (120 kV, 100Sn, 150 Sn). For LCS, relative for 120 kV, conversion factors for 100Sn produced a median increase in effective dose of 9%, with organ dose increases of 8% to lung, 5% to breast, 15% to thyroid, and 3% to skin. Conversion factors for 150Sn produced a median increase in effective dose of 20%, with organ dose increases of 16%, 18%, 26%, and 12% to these same organs, respectively. For CTC, relative for 120 kV, conversion factors for 100Sn produced a median increase in effective dose of 12%, with organ dose increases of 9% to colon, 10% to liver, 11% to stomach, and 4% to skin. Conversion factors for 150Sn produced a median increase in effective dose of 21%, with organ dose increases of 16%, 17%, 19%, and 10% to these same organs, respectively. CONCLUSIONS: Results show that dose conversion factors are greater when using tin filtration and should be considered when evaluating tin's potential for dose reduction.


Subject(s)
Colonography, Computed Tomographic , Lung Neoplasms , Humans , Tin , Radiation Dosage , Early Detection of Cancer , Lung Neoplasms/diagnostic imaging
5.
Int J Comput Assist Radiol Surg ; 18(12): 2329-2338, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37336801

ABSTRACT

PURPOSE: Medical image analysis suffers from a sparsity of annotated data necessary in learning-based models. Cardiorespiratory simulators have been developed to counter the lack of data. However, the resulting data often lack realism. Hence, the proposed method aims to synthesize realistic and fully customizable angiograms of coronary arteries for the training of learning-based biomedical tasks, for cardiologists performing interventions, and for cardiologist trainees. METHODS: 3D models of coronary arteries are generated with a fully customizable realistic cardiorespiratory simulator. The transfer of X-ray angiography style to simulator-generated images is performed using a new vessel-specific adaptation of the CycleGAN model. The CycleGAN model is paired with a vesselness-based loss function that is designed as a vessel-specific structural integrity constraint. RESULTS: Validation is performed both on the style and on the preservation of the shape of the arteries of the images. The results show a PSNR of 14.125, an SSIM of 0.898, and an overlapping of 89.5% using the Dice coefficient. CONCLUSION: We proposed a novel fluoroscopy-based style transfer method for the enhancement of the realism of simulated coronary artery angiograms. The results show that the proposed model is capable of accurately transferring the style of X-ray angiograms to the simulations while keeping the integrity of the structures of interest (i.e., the topology of the coronary arteries).


Subject(s)
Coronary Vessels , Image Processing, Computer-Assisted , Humans , X-Rays , Coronary Vessels/diagnostic imaging , Radiography , Coronary Angiography/methods , Fluoroscopy , Image Processing, Computer-Assisted/methods
6.
Med Phys ; 50(5): 3066-3075, 2023 May.
Article in English | MEDLINE | ID: mdl-36808107

ABSTRACT

BACKGROUND: Gastrointestinal (GI) tract motility is one of the main sources for intra/inter-fraction variability and uncertainty in radiation therapy for abdominal targets. Models for GI motility can improve the assessment of delivered dose and contribute to the development, testing, and validation of deformable image registration (DIR) and dose-accumulation algorithms. PURPOSE: To implement GI tract motion in the 4D extended cardiac-torso (XCAT) digital phantom of human anatomy. MATERIALS AND METHODS: Motility modes that exhibit large amplitude changes in the diameter of the GI tract and may persist over timescales comparable to online adaptive planning and radiotherapy delivery were identified based on literature research. Search criteria included amplitude changes larger than planning risk volume expansions and durations of the order of tens of minutes. The following modes were identified: peristalsis, rhythmic segmentation, high amplitude propagating contractions (HAPCs), and tonic contractions. Peristalsis and rhythmic segmentations were modeled by traveling and standing sinusoidal waves. HAPCs and tonic contractions were modeled by traveling and stationary Gaussian waves. Wave dispersion in the temporal and spatial domain was implemented by linear, exponential, and inverse power law functions. Modeling functions were applied to the control points of the nonuniform rational B-spline surfaces defined in the reference XCAT library. GI motility was combined with the cardiac and respiratory motions available in the standard 4D-XCAT phantom. Default model parameters were estimated based on the analysis of cine MRI acquisitions in 10 patients treated in a 1.5T MR-linac. RESULTS: We demonstrate the ability to generate realistic 4D multimodal images that simulate GI motility combined with respiratory and cardiac motion. All modes of motility, except tonic contractions, were observed in the analysis of our cine MRI acquisitions. Peristalsis was the most common. Default parameters estimated from cine MRI were used as initial values for simulation experiments. It is shown that in patients undergoing stereotactic body radiotherapy for abdominal targets, the effects of GI motility can be comparable or larger than the effects of respiratory motion. CONCLUSION: The digital phantom provides realistic models to aid in medical imaging and radiation therapy research. The addition of GI motility will further contribute to the development, testing, and validation of DIR and dose accumulation algorithms for MR-guided radiotherapy.


Subject(s)
Algorithms , Magnetic Resonance Imaging, Cine , Humans , Phantoms, Imaging , Computer Simulation , Gastrointestinal Tract , Magnetic Resonance Imaging/methods
7.
Med Phys ; 50(7): 4366-4378, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36637206

ABSTRACT

PURPOSE: Computational abnormalities (e.g., lesion models) for use in medical imaging simulation studies are frequently generated using data collected from clinical images. Although this approach allows for highly-customizable lesion detectability studies on clinical computed tomography (CT) data, the ground-truth lesion models produced with this method do not provide a sufficiently realistic lesion morphology for use with current anthropomorphic simulation studies. This work is intended to demonstrate that the new anatomically-informed lesion model presented here is not inferior to the previous lesion model under CT imaging, and can therefore provide a more biologically-informed model for use with simulated CT imaging studies. METHODS: The lesion model was simulated initially from a seed cell with 10 µm diameter placed in an anatomical location within segmented lung CT and was allowed to reproduce locally within the available solid angle in discrete time-intervals (corresponding to synchronous cell cycles) up to a size of ∼200 µm in diameter. Daughter cells of generation G were allowed also to reproduce on the next available time-step given sufficient space. At lesion sizes beyond 200 µm in diameter, the health of subregions of cells were tracked with a Markov chain technique, indicating which regions were likely to continue growing, which were likely stable, and which were likely to develop necrosis given their proximity to anatomical features and other lesion cells. For lesion sizes beyond 500 µm, the lesion was represented with three nested, triangulated surfaces (corresponding to proliferating, dormant, and necrotic regions), indicating how discrete volumes of the lesion were behaving at a particular time. Lesions were then assigned smoothly-varying material properties based on their cellular level health in each region, resulting in a multi-material lesion model. The lesions produced with this model were then voxelized and placed into lung CT images for comparison with both prior work and clinical data. This model was subject to an observer study in which cardiothoracic imaging radiologists assessed the realism of both clinical and synthetic lesions in CT images. RESULTS: The useable outputs of this work were voxel- or surface-based, validated, computational lesions, at a scale clearly visible on clinical CT (3-4 cm). Analysis of the observer study results indicated that the computationally-generated lesions were indistinguishable from clinical lesions (AUC = 0.49, 95% CI = [0.36, 0.61]) and non-inferior to an earlier image-based lesion model-indicating the advantage of the model for use in both hybrid CT images and in simulated CT imaging of the lungs. CONCLUSIONS: Results indicated the non-inferiority of this model as compared to previous methods, indicating the utility of the model for use in both hybrid CT images and in simulated CT imaging.


Subject(s)
Radiologists , Tomography, X-Ray Computed , Humans , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Computer Simulation , Lung/diagnostic imaging
8.
Phys Med Biol ; 68(2)2023 01 05.
Article in English | MEDLINE | ID: mdl-36595253

ABSTRACT

Objective.To develop a novel patient-specific cardio-respiratory motion prediction approach for X-ray angiography time series based on a simple long short-term memory (LSTM) model.Approach.The cardio-respiratory motion behavior in an X-ray image sequence was represented as a sequence of 2D affine transformation matrices, which provide the displacement information of contrasted moving objects (arteries and medical devices) in a sequence. The displacement information includes translation, rotation, shearing, and scaling in 2D. A many-to-many LSTM model was developed to predict 2D transformation parameters in matrix form for future frames based on previously generated images. The method was developed with 64 simulated phantom datasets (pediatric and adult patients) using a realistic cardio-respiratory motion simulator (XCAT) and was validated using 10 different patient X-ray angiography sequences.Main results.Using this method we achieved less than 1 mm prediction error for complex cardio-respiratory motion prediction. The following mean prediction error values were recorded over all the simulated sequences: 0.39 mm (for both motions), 0.33 mm (for only cardiac motion), and 0.47 mm (for only respiratory motion). The mean prediction error for the patient dataset was 0.58 mm.Significance.This study paves the road for a patient-specific cardio-respiratory motion prediction model, which might improve navigation guidance during cardiac interventions.


Subject(s)
Angiography , Heart , Humans , Child , X-Rays , Heart/diagnostic imaging , Motion
9.
Phys Imaging Radiat Oncol ; 25: 100409, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36655213

ABSTRACT

Background and Purpose: The accuracy and precision of radiation therapy are dependent on the characterization of organ-at-risk and target motion. This work aims to demonstrate a 4D magnetic resonance imaging (MRI) method for improving spatial and temporal resolution in respiratory motion imaging for treatment planning in abdominothoracic radiotherapy. Materials and Methods: The spatial and temporal resolution of phase-resolved respiratory imaging is improved by considering a novel sampling function based on quasi-random projection-encoding and peripheral k-space view-sharing. The respiratory signal is determined directly from k-space, obviating the need for an external surrogate marker. The average breathing curve is used to optimize spatial resolution and temporal blurring by limiting the extent of data sharing in the Fourier domain. Improvements in image quality are characterized by evaluating changes in signal-to-noise ratio (SNR), resolution, target detection, and level of artifact. The method is validated in simulations, in a dynamic phantom, and in-vivo imaging. Results: Sharing of high-frequency k-space data, driven by the average breathing curve, improves spatial resolution and reduces artifacts. Although equal sharing of k-space data improves resolution and SNR in stationary features, phases with large temporal changes accumulate significant artifacts due to averaging of high frequency features. In the absence of view-sharing, no averaging and detection artifacts are observed while spatial resolution is degraded. Conclusions: The use of a quasi-random sampling function, with view-sharing driven by the average breathing curve, provides a feasible method for self-navigated 4D-MRI at improved spatial resolution.

10.
Acad Radiol ; 30(6): 1153-1163, 2023 06.
Article in English | MEDLINE | ID: mdl-35871908

ABSTRACT

RATIONALE AND OBJECTIVES: Deep silicon-based photon-counting CT (Si-PCCT) is an emerging detector technology that provides improved spatial resolution by virtue of its reduced pixel sizes. This article reports the outcomes of the first simulation study evaluating the impact of this advantage over energy-integrating CT (ECT) for estimation of morphological radiomics features in lung lesions. MATERIALS AND METHODS: A dynamic nutrient-access-based stochastic model was utilized to generate three distinct morphologies for lung lesions. The lesions were inserted into the lung parenchyma of an anthropomorphic phantom (XCAT - 50th percentile BMI) at 50, 70, and 90 mm from isocenter. The phantom was virtually imaged with an imaging simulator (DukeSim) modeling a Si-PCCT and a conventional ECT system using varying imaging conditions (dose, reconstruction kernel, and pixel size). The imaged lesions were segmented using a commercial segmentation tool (AutoContour, Advantage Workstation Server 3.2, GE Healthcare) followed by extraction of morphological radiomics features using an open-source radiomics package (pyradiomics). The estimation errors for both systems were computed as percent differences from corresponding feature values estimated for the ground-truth lesions. RESULTS: Compared to ECT, the mean estimation error was lower for Si-PCCT (independent features: 35.9% vs. 54.0%, all features: 54.5% vs. 68.1%) with statistically significant reductions in errors for 8/14 features. For both systems, the estimation accuracy was minimally affected by dose and distance from the isocenter while reconstruction kernel and pixel size were observed to have a relatively stronger effect. CONCLUSION: For all lesions and imaging conditions considered, Si-PCCT exhibited improved estimation accuracy for morphological radiomics features over a conventional ECT system, demonstrating the potential of this technology for improved quantitative imaging.


Subject(s)
Photons , Silicon , Humans , Tomography, X-Ray Computed/methods , Computer Simulation , Thorax , Phantoms, Imaging
11.
Med Phys ; 49(6): 4071-4081, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35383946

ABSTRACT

BACKGROUND: Navigation guidance in cardiac interventions is provided by X-ray angiography. Cumulative radiation exposure is a serious concern for pediatric cardiac interventions. PURPOSE: A generative learning-based approach is proposed to predict X-ray angiography frames to reduce the radiation exposure for pediatric cardiac interventions while preserving the image quality. METHODS: Frame predictions are based on a model-free motion estimation approach using a long short-term memory architecture and a content predictor using a convolutional neural network structure. The presented model thus estimates contrast-enhanced vascular structures such as the coronary arteries and their motion in X-ray sequences in an end-to-end system. This work was validated with 56 simulated and 52 patients' X-ray angiography sequences. RESULTS: Using the predicted images can reduce the number of pulses by up to three new frames without affecting the image quality. The average required acquisition can drop by 30% per second for a 15 fps acquisition. The average structural similarity index measurement was 97% for the simulated dataset and 82% for the patients' dataset. CONCLUSIONS: Frame prediction using a learning-based method is promising for minimizing radiation dose exposure. The required pulse rate is reduced while preserving the frame rate and the image quality. With proper integration in X-ray angiography systems, this method can pave the way for improved dose management.


Subject(s)
Drug Tapering , Child , Fluoroscopy/methods , Humans , Radiation Dosage , Radiography , X-Rays
12.
Med Phys ; 49(5): 2938-2951, 2022 May.
Article in English | MEDLINE | ID: mdl-35195901

ABSTRACT

PURPOSE: Virtual (in silico) imaging trials (VITs), involving computerized phantoms and models of the imaging process, provide a modern alternative to clinical imaging trials. VITs are faster, safer, and enable otherwise-impossible investigations. Current phantoms used in VITs are limited in their ability to model functional behavior such as contrast perfusion which is an important determinant of dose and image quality in CT imaging. In our prior work with the XCAT computational phantoms, we determined and modeled inter-organ (organ to organ) intravenous contrast concentration as a function of time from injection. However, intra-organ concentration, heterogeneous distribution within a given organ, was not pursued. We extend our methods in this work to model intra-organ concentration within the XCAT phantom with a specific focus on the liver. METHODS: Intra-organ contrast perfusion depends on the organ's vessel network. We modeled the intricate vascular structures of the liver, informed by empirical and theoretical observations of anatomy and physiology. The developed vessel generation algorithm modeled a dual-input-single-output vascular network as a series of bifurcating surfaces to optimally deliver flow within the bounding surface of a given XCAT liver. Using this network, contrast perfusion was simulated within voxelized versions of the phantom by using knowledge of the blood velocities in each vascular structure, vessel diameters and length, and the time since the contrast entered the hepatic artery. The utility of the enhanced phantom was demonstrated through a simulation study with the phantom voxelized prior to CT simulation with the relevant liver vasculature prepared to represent blood and iodinated contrast media. The spatial extent of the blood-contrast mixture was compared to clinical data. RESULTS: The vascular structures of the liver were generated with size and orientation which resulted in minimal energy expenditure required to maintain blood flow. Intravenous contrast was simulated as having known concentration and known total volume in the liver as calibrated from time-concentration curves. Measurements of simulated CT ROIs were found to agree with clinically observed values of early arterial phase contrast enhancement of the parenchyma ( ∼ 5 $ \sim 5$ HU). Similarly, early enhancement in the hepatic artery was found to agree with average clinical enhancement ( 180 $(180$ HU). CONCLUSIONS: The computational methods presented here furthered the development of the XCAT phantoms allowing for multi-timepoint contrast perfusion simulations, enabling more anthropomorphic virtual clinical trials intended for optimization of current clinical imaging technologies and applications.


Subject(s)
Liver , Tomography, X-Ray Computed , Computer Simulation , Liver/diagnostic imaging , Perfusion , Phantoms, Imaging , Tomography, X-Ray Computed/methods
13.
J Radiol Prot ; 40(4)2020 11 11.
Article in English | MEDLINE | ID: mdl-33027775

ABSTRACT

The outbreak of coronavirus SARS-COV2 affected more than 180 countries necessitating fast and accurate diagnostic tools. Reverse transcriptase polymerase chain reaction (RT-PCR) has been identified as a gold standard test with Chest CT and Chest Radiography showing promising results as well. However, radiological solutions have not been used extensively for the diagnosis of COVID-19 disease, partly due to radiation risk. This study aimed to provide quantitative comparison of imaging radiation risk versus COVID risk. The analysis was performed in terms of mortality rate per age group. COVID-19 mortality was extracted from epidemiological data across 299, 004 patients published by ISS-Integrated surveillance of COVID-19 in Italy. For radiological risk, the study considered 659 Chest CT performed in adult patients. Organ doses were estimated using a Monte Carlo method and then used to calculate Risk Index that was converted into an upper bound for related mortality rate following NCI-SEER data. COVID-19 mortality showed a rapid rise for ages >30 years old (min: 0.30%; max: 30.20%), whereas only four deaths were reported in the analysed patient cohort for ages <20 years old. The rates decreased for radiation risk across age groups. The median mortality rate across all ages for Chest-CT and Chest-Radiography were 0.007% (min: 0.005%; max: 0.011%) and 0.0003% (min: 0.0002%; max: 0.0004%), respectively. COVID-19, Chest Radiography, and Chest CT mortality rates showed different magnitudes and trends across age groups. In higher ages, the risk of COVID-19 far outweighs that of radiological exams. Based on risk comparison alone, Chest Radiography and CT for COVID-19 care is justified for patients older than 20 and 30 years old, respectively. Notwithstanding other aspects of diagnosis, the present results capture a component of risk consideration associated with the use of imaging for COVID. Once integrated with other diagnostic factors, they may help inform better management of the pandemic.


Subject(s)
COVID-19 , Adult , Humans , Pandemics , RNA, Viral , Radiography, Thoracic , SARS-CoV-2 , Young Adult
14.
Med Phys ; 47(12): 6562-6566, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32628272

ABSTRACT

PURPOSE: Patient radiation burden in computed tomography (CT) can best be characterized through risk estimates derived from organ doses. Organ doses can be estimated by Monte Carlo simulations of the CT procedures on computational phantoms assumed to emulate the patients. However, the results are subject to uncertainties related to how accurately the patient and CT procedure are modeled. Different methods can lead to different results. This paper, based on decades of organ dosimetry research, offers a database of CT scans, scan specifics, and organ doses computed using a validated Monte Carlo simulation of each patient and acquisition. It is aimed that the database can serve as means to benchmark different organ dose estimation methods against a benchmark dataset. ACQUISITION AND VALIDATION METHODS: Organ doses were estimated for 40 adult patients (22 male, 18 female) who underwent chest and abdominopelvic CT examinations. Patient-based computational models were created for each patient including 26 organs for female and 25 organs for male cases. A Monte Carlo code, previously validated experimentally, was applied to calculate organ doses under constant and two modulated tube current conditions. DATA FORMAT AND USAGE NOTES: The generated database reports organ dose values for chest and abdominopelvic examinations per patient and imaging condition. Patient information and images and scan specifications (energy spectrum, bowtie filter specification, and tube current profiles) are provided. The database is available at publicly accessible digital repositories. POTENTIAL APPLICATIONS: Consistency in patient risk estimation, and associated justification and optimization requires accuracy and consistency in organ dose estimation. The database provided in this paper is a helpful tool to benchmark different organ dose estimation methodologies to facilitate comparisons, assess uncertainties, and improve risk assessment of CT scans based on organ dose.


Subject(s)
Benchmarking , Tomography, X-Ray Computed , Adult , Computer Simulation , Female , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage
15.
Int J Numer Method Biomed Eng ; 36(5): e3324, 2020 05.
Article in English | MEDLINE | ID: mdl-32053266

ABSTRACT

Understanding aerosol deposition in the human lung is of great significance in pulmonary toxicology and inhalation pharmacology. Adverse effects of inhaled environmental aerosols and pharmacological efficacy of inhaled therapeutics are dependent on aerosol properties as well as person-specific respiratory tract anatomy and physiology. Anatomical geometry and physiological function of human airways depend on age, gender, weight, fitness, health, and disease status. Tools for the generation of the population- and subject-specific virtual airway anatomical geometry based on anthropometric data and physiological vitals are invaluable in respiratory diagnostics, personalized pulmonary pharmacology, and model-based management of chronic respiratory diseases. Here we present a novel protocol and software framework for the generation of subject-specific airways based on anthropometric measurements of the subject's body, using the anatomical input, and the conventional spirometry, providing the functional (physiological) data. This model can be used for subject-specific simulations of respiration physiology, gas exchange, and aerosol inhalation and deposition.


Subject(s)
Anthropometry/methods , Models, Theoretical , Administration, Inhalation , Humans , Hydrodynamics , Lung/physiology
16.
IEEE Trans Radiat Plasma Med Sci ; 3(1): 1-23, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30740582

ABSTRACT

Over the past decades, significant improvements have been made in the field of computational human phantoms (CHPs) and their applications in biomedical engineering. Their sophistication has dramatically increased. The very first CHPs were composed of simple geometric volumes, e.g., cylinders and spheres, while current CHPs have a high resolution, cover a substantial range of the patient population, have high anatomical accuracy, are poseable, morphable, and are augmented with various details to perform functionalized computations. Advances in imaging techniques and semi-automated segmentation tools allow fast and personalized development of CHPs. These advances open the door to quickly develop personalized CHPs, inherently including the disease of the patient. Because many of these CHPs are increasingly providing data for regulatory submissions of various medical devices, the validity, anatomical accuracy, and availability to cover the entire patient population is of utmost importance. The article is organized into two main sections: the first section reviews the different modeling techniques used to create CHPs, whereas the second section discusses various applications of CHPs in biomedical engineering. Each topic gives an overview, a brief history, recent developments, and an outlook into the future.

17.
Rev Sci Instrum ; 88(9): 094303, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964205

ABSTRACT

Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user-independent approach for scatter correction in nuclear medicine.

18.
J Med Imaging (Bellingham) ; 3(1): 013501, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26835498

ABSTRACT

Contrast enhancement is a key component of computed tomography (CT) imaging and offers opportunities for optimization. The design and optimization of techniques, however, require orchestration with the scan parameters and, further, a methodology to relate contrast enhancement and injection function. We used such a methodology to develop a method, the analytical inverse method, to predict the required injection function to achieve a desired contrast enhancement in a given organ by incorporation of a physiologically based compartmental model. The method was evaluated across 32 different target contrast enhancement functions for aorta, kidney, stomach, small intestine, and liver. The results exhibited that the analytical inverse method offers accurate performance with error in the range of 10% deviation between the predicted and desired organ enhancement curves. However, this method is incapable of predicting the injection function based on the liver enhancement. The findings of this study can be useful in optimizing contrast medium injection function as well as scan timing to provide more consistency in the way contrast-enhanced CT examinations are performed. To our knowledge, this work is one of the first attempts to predict the contrast material injection function for a desired organ enhancement curve.

19.
Radiol Oncol ; 48(4): 408-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25435856

ABSTRACT

BACKGROUND: With the rapidly increasing application of adaptive radiotherapy, large datasets of organ geometries based on the patient's anatomy are desired to support clinical application or research work, such as image segmentation, re-planning, and organ deformation analysis. Sometimes only limited datasets are available in clinical practice. In this study, we propose a new method to generate large datasets of organ geometries to be utilized in adaptive radiotherapy. METHODS: Given a training dataset of organ shapes derived from daily cone-beam CT, we align them into a common coordinate frame and select one of the training surfaces as reference surface. A statistical shape model of organs was constructed, based on the establishment of point correspondence between surfaces and non-uniform rational B-spline (NURBS) representation. A principal component analysis is performed on the sampled surface points to capture the major variation modes of each organ. RESULTS: A set of principal components and their respective coefficients, which represent organ surface deformation, were obtained, and a statistical analysis of the coefficients was performed. New sets of statistically equivalent coefficients can be constructed and assigned to the principal components, resulting in a larger geometry dataset for the patient's organs. CONCLUSIONS: These generated organ geometries are realistic and statistically representative.

20.
Health Phys ; 107(6): 564-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25353242

ABSTRACT

The Human Monitoring Laboratory (Canada) has looked at parameters (lung volume, lung deposition pattern, etc.) that can affect the counting efficiency of its lung counting system. The calibration of the system is performed using the Lawrence Livermore National Laboratory (LLNL) torso phantom; however, the effect of respiratory motion cannot be accounted for using these phantoms. When measuring an internal deposition in the lungs of a subject, respiration causes a change in the volume of the lungs and the thoracic cavity and introduces a variable distance between the lungs and the detectors. These changes may have an impact on the counting efficiency and may need to be considered during a measurement. In this study, the HML has simulated the respiration motion using a 4D non-uniform rational b-spline (NURBS)-based Cardiac-Torso (NCAT) phantom and determined the impact of that motion on the counting efficiency of their lung counting system during measurement. The respiratory motion was simulated by a 16 timeframe cycled 4D NURBS-based NCAT phantom developed at the Department of Biomedical Engineering and Radiology, University of North Carolina. The counting efficiency of the four germanium detectors comprising the HML lung counting system was obtained using MCNPX version 2.6E for photon energies between 17 and 1,000 keV. The amount of uncertainty due to the breathing motion was estimated by looking at the efficiency bias, which was highest at low photon energies as expected due to attenuation and geometry effects. Also, to reduce the influence of the detectors' positioning, an array was calculated by adding the individual detector tallies for a given energy and timeframe. For photon energies of 40 keV and higher, the array efficiency bias showed an underestimation of about 5%. If compared to other parameters already studied by the HML, this value demonstrates the insignificant impact of the breathing motion.


Subject(s)
Lung/physiology , Phantoms, Imaging/standards , Radiometry/instrumentation , Respiratory Mechanics/physiology , Calibration , Computer Simulation , Germanium , Heart/radiation effects , Humans , Lung/radiation effects , Monte Carlo Method , Radiation Dosage , Respiratory Mechanics/radiation effects , Thorax/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...