Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 6408, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328478

ABSTRACT

Extracellular histones in neutrophil extracellular traps (NETs) or in chromatin from injured tissues are highly pathological, particularly when liberated by DNases. We report the development of small polyanions (SPAs) (~0.9-1.4 kDa) that interact electrostatically with histones, neutralizing their pathological effects. In vitro, SPAs inhibited the cytotoxic, platelet-activating and erythrocyte-damaging effects of histones, mechanistic studies revealing that SPAs block disruption of lipid-bilayers by histones. In vivo, SPAs significantly inhibited sepsis, deep-vein thrombosis, and cardiac and tissue-flap models of ischemia-reperfusion injury (IRI), but appeared to differ in their capacity to neutralize NET-bound versus free histones. Analysis of sera from sepsis and cardiac IRI patients supported these differential findings. Further investigations revealed this effect was likely due to the ability of certain SPAs to displace histones from NETs, thus destabilising the structure. Finally, based on our work, a non-toxic SPA that inhibits both NET-bound and free histone mediated pathologies was identified for clinical development.


Subject(s)
Extracellular Traps/drug effects , Histones/metabolism , Polymers/pharmacology , Sepsis/blood , Sepsis/drug therapy , Animals , Erythrocytes/drug effects , Erythrocytes/pathology , Female , Histones/toxicity , Humans , Lipid Bilayers , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Myocardial Infarction/blood , Platelet Activation/drug effects , Polyelectrolytes , Polymers/chemistry , Rats, Wistar , Reperfusion Injury/blood , Reperfusion Injury/pathology , Sepsis/pathology
2.
J Neurosci ; 31(44): 15640-9, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22049407

ABSTRACT

The error-related negativity (ERN) and positivity (Pe) are components of event-related potential (ERP) waveforms recorded from humans and are thought to reflect performance monitoring. Error-related signals have also been found in single-neuron responses and local-field potentials recorded in supplementary eye field and anterior cingulate cortex of macaque monkeys. However, the homology of these neural signals across species remains controversial. Here, we show that monkeys exhibit ERN and Pe components when they commit errors during a saccadic stop-signal task. The voltage distributions and current densities of these components were similar to those found in humans performing the same task. Subsequent analyses show that neither stimulus- nor response-related artifacts accounted for the error-ERPs. This demonstration of macaque homologues of the ERN and Pe forms a keystone in the bridge linking human and nonhuman primate studies on the neural basis of performance monitoring.


Subject(s)
Brain Mapping , Conflict, Psychological , Evoked Potentials/physiology , Inhibition, Psychological , Signal Detection, Psychological/physiology , Analysis of Variance , Animals , Electroencephalography , Female , Macaca , Male , Neuropsychological Tests , Photic Stimulation , Psychomotor Performance , Reaction Time/physiology , Saccades
SELECTION OF CITATIONS
SEARCH DETAIL
...