Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Heliyon ; 10(5): e26423, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434363

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.

2.
Front Med (Lausanne) ; 10: 1121020, 2023.
Article in English | MEDLINE | ID: mdl-36873868

ABSTRACT

The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a membrane receptor that plays a key role in development. It is highly expressed during the embryonic stage and relatively low in some normal adult tissues. Malignancies such as leukemia, lymphoma, and some solid tumors overexpress ROR1, making it a promising target for cancer treatment. Moreover, immunotherapy with autologous T-cells engineered to express a ROR1-specific chimeric antigen receptor (ROR1 CAR-T cells) has emerged as a personalized therapeutic option for patients with tumor recurrence after conventional treatments. However, tumor cell heterogeneity and tumor microenvironment (TME) hinder successful clinical outcomes. This review briefly describes the biological functions of ROR1 and its relevance as a tumor therapeutic target, as well as the architecture, activity, evaluation, and safety of some ROR1 CAR-T cells used in basic research and clinical trials. Finally, the feasibility of applying the ROR1 CAR-T cell strategy in combination with therapies targeting other tumor antigens or with inhibitors that prevent tumor antigenic escape is also discussed. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT02706392.

3.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275316

ABSTRACT

Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod's AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential "carpet model" mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin's effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy.

4.
Nat Commun ; 13(1): 7751, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517492

ABSTRACT

An estimated one-third of tuberculosis (TB) cases go undiagnosed or unreported. Sputum samples, widely used for TB diagnosis, are inefficient at detecting infection in children and paucibacillary patients. Indeed, developing point-of-care biomarker-based diagnostics that are not sputum-based is a major priority for the WHO. Here, in a proof-of-concept study, we tested whether pulmonary TB can be detected by analyzing patient exhaled breath condensate (EBC) samples. We find that the presence of Mycobacterium tuberculosis (Mtb)-specific lipids, lipoarabinomannan lipoglycan, and proteins in EBCs can efficiently differentiate baseline TB patients from controls. We used EBCs to track the longitudinal effects of antibiotic treatment in pediatric TB patients. In addition, Mtb lipoarabinomannan and lipids were structurally distinct in EBCs compared to ex vivo cultured bacteria, revealing specific metabolic and biochemical states of Mtb in the human lung. This provides essential information for the rational development or improvement of diagnostic antibodies, vaccines and therapeutic drugs. Our data collectively indicate that EBC analysis can potentially facilitate clinical diagnosis of TB across patient populations and monitor treatment efficacy. This affordable, rapid and non-invasive approach seems superior to sputum assays and has the potential to be implemented at point-of-care.


Subject(s)
Body Fluids , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Child , Tuberculosis/diagnosis , Tuberculosis/microbiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Sputum/microbiology , Sensitivity and Specificity
5.
Toxins (Basel) ; 14(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35737069

ABSTRACT

Spider venoms constitute a trove of novel peptides with biotechnological interest. Paucity of next-generation-sequencing (NGS) data generation has led to a description of less than 1% of these peptides. Increasing evidence supports the underestimation of the assembled genes a single transcriptome assembler can predict. Here, the transcriptome of the venom gland of the spider Pamphobeteus verdolaga was re-assembled, using three free access algorithms, Trinity, SOAPdenovo-Trans, and SPAdes, to obtain a more complete annotation. Assembler's performance was evaluated by contig number, N50, read representation on the assembly, and BUSCO's terms retrieval against the arthropod dataset. Out of all the assembled sequences with all software, 39.26% were common between the three assemblers, and 27.88% were uniquely assembled by Trinity, while 27.65% were uniquely assembled by SPAdes. The non-redundant merging of all three assemblies' output permitted the annotation of 9232 sequences, which was 23% more when compared to each software and 28% more when compared to the previous P. verdolaga annotation; moreover, the description of 65 novel theraphotoxins was possible. In the generation of data for non-model organisms, as well as in the search for novel peptides with biotechnological interest, it is highly recommended to employ at least two different transcriptome assemblers.


Subject(s)
Spider Venoms , Transcriptome , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Peptides/genetics , Software , Spider Venoms/chemistry , Spider Venoms/genetics
6.
Front Immunol ; 13: 878209, 2022.
Article in English | MEDLINE | ID: mdl-35572525

ABSTRACT

Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.


Subject(s)
Neoplasm Recurrence, Local , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Lymphocyte Activation , Tumor Microenvironment
7.
Data Brief ; 41: 107953, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35242934

ABSTRACT

Post-transcriptional gene regulation in Trypanosoma cruzi, the etiological agent of Chagas disease, plays a critical role in ensuring that the parasite successfully completes its life cycle in both of its obligate hosts: insect vector and mammals. This regulation is basically governed by RNA binding proteins (RBPs) through their interactions with cis-elements located in the UTRs of their mRNA targets. LYT1 gene, coding for a virulence factor of T. cruzi, is expressed into two isoforms: kLYT1 and mLYT1, which play different functions according to their cellular location and parasite life-cycle stages. Whereas kLYT1 exhibits a regulatory role during the epimastigote-to-metacyclic trypomastigote stage transition, mLYT1 acts as a pore-forming protein, relevant for host cell invasion and parasite intracellular survival. Considering the LYT1 biological relevance and the fact that this is a protein exclusive of T. cruzi, the protein and its mechanisms regulating the alternative gene expression products are promising targets for therapeutic intervention. In this work, an experimental approach consisting of pull-downs assays followed by proteomic analyzes was carried out to identify the proteins interacting with the different LYT1 mRNAs. The dataset presented here was obtained through three biological replicates using all the different UTRs characterized in the LYT1 mRNAs (i.e., 5´UTR kLYT1, 5´UTR mLYT1, and I and II-type 3´UTRs) as baits, and protein extracts from epimastigotes and trypomastigotes of the 058 PUJ (DTU I) strain. Bound proteins were analyzed by liquid chromatography coupled to mass spectrometry (LC/MS). As a control of non-specificity, the same protein extracts were incubated with Leishmania braziliensis rRNA and the bound proteins also identified by LC/MS. In all, 1,557 proteins were identified, 313 of them were found in at least two replicates and 18 proteins were exclusively associated with the LYT1 baits. Of these, six proteins have motifs related to RNA binding, and seven remain annotated as hypothetical proteins. Remarkably, three of these hypothetical proteins also contain nucleic acid binding motifs. This knowledge, beside expanding the known T. cruzi proteome, gains insight into putative regulatory proteins responsible for alternative LYT1 mRNAs processing. Raw mass spectrometry data are available via MassIVE proteome Xchange with identifier PXD027371.

8.
Clin Proteomics ; 19(1): 1, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34991449

ABSTRACT

BACKGROUND: Thrombocytopenia is frequent in Plasmodium vivax malaria but the role of platelets in pathogenesis is unknown. Our study explores the platelet (PLT) proteome from uncomplicated P. vivax patients, to fingerprint molecular pathways related to platelet function. Plasma levels of Platelet factor 4 (PF4/CXCL4) and Von Willebrand factor (VWf), as well as in vitro PLTs-P. vivax infected erythrocytes (Pv-IEs) interactions were also evaluated to explore the PLT response and effect on parasite development. METHODS: A cohort of 48 patients and 25 healthy controls were enrolled. PLTs were purified from 5 patients and 5 healthy controls for Liquid Chromatography-Mass spectrometry (LC-MS/MS) analysis. Plasma levels of PF4/CXCL4 and VWf were measured in all participants. Additionally, P. vivax isolates (n = 10) were co-cultured with PLTs to measure PLT activation by PF4/CXCL4 and Pv-IE schizonts formation by light microscopy. RESULTS: The proteome from uncomplicated P. vivax patients showed 26 out of 215 proteins significantly decreased. PF4/CXCL4 was significantly decreased followed by other proteins involved in platelet activation, cytoskeletal remodeling, and endothelial adhesion, including glycoprotein V that was significantly decreased in thrombocytopenic patients. In contrast, acute phase proteins, including SERPINs and Amyloid Serum A1 were increased. High levels of VWf in plasma from patients suggested endothelial activation while PF4/CXCL4 plasma levels were similar between patients and controls. Interestingly, high levels of PF4/CXCL4 were released from PLTs-Pv-IEs co-cultures while Pv-IEs schizont formation was inhibited. CONCLUSIONS: The PLT proteome analyzed in this study suggests that PLTs actively respond to P. vivax infection. Altogether, our findings suggest important roles of PF4/CXCL4 during uncomplicated P. vivax infection through a possible intracellular localization. Our study shows that platelets are active responders to P. vivax infection, inhibiting intraerythrocytic parasite development. Future studies are needed to further investigate the molecular pathways of interaction between platelet proteins found in this study and host response, which could affect parasite control as well as disease progression.

9.
Psychiatry Res Neuroimaging ; 317: 111382, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34482053

ABSTRACT

Valproate compositions are frequently used to treat bipolar disorder (BD); however, 87% of patients do not report full response in the long-term. There is scarce information about the clinical features and brain structural characteristics of long-term treatment response (LTTR) to this medication. In this study, we aim to evaluate the clinical characteristics and prefrontal cortical thickness (CT) of LTTR to valproate in BD. We evaluated 30 BD outpatients on valproate treatment, and 20 controls with a 3T T1-weighted 3D brain scan and Alda's scale for LTTR. An analysis of covariance was used to evaluate CT measures and a logistic regression was conducted to predict the full response (FR) using clinical features and CT measures. Patients with an insufficient response (IR) reported thinner right frontal eye fields, anterior and dorsolateral prefrontal cortexes compared with controls. FR patients presented thicker right dorsolateral prefrontal cortex than IR and no differences with controls. Patients with mixed features presented increased odds of achieving FR, while CT measures reported non-significant results. This is the first study to report mixed features as a clinical predictor of valproate LTTR. Our findings also suggest better preservation of the right prefrontal cortex of subjects with FR to valproate.


Subject(s)
Bipolar Disorder , Valproic Acid , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Cerebral Cortex , Humans , Magnetic Resonance Imaging/methods , Prefrontal Cortex/diagnostic imaging , Valproic Acid/therapeutic use
10.
Infect Genet Evol ; 87: 104675, 2021 01.
Article in English | MEDLINE | ID: mdl-33316430

ABSTRACT

Host genetics is an influencing factor in the manifestation of infectious diseases. In this study, the association of mild malaria with 28 variants in 16 genes previously reported in other populations and/or close to ancestry-informative markers (AIMs) selected was evaluated in an admixed 736 Colombian population sample. Additionally, the effect of genetic ancestry on phenotype expression was explored. For this purpose, the ancestral genetic composition of Turbo and El Bagre was determined. A higher Native American ancestry trend was found in the population with lower malaria susceptibility [odds ratio (OR) = 0.416, 95% confidence interval (95% CI) = 0.234-0.740, P = 0.003]. Three AIMs presented significant associations with the disease phenotype (MID1752, MID921, and MID1586). The first two were associated with greater malaria susceptibility (D/D, OR = 2.23, 95% CI = 1.06-4.69, P = 0.032 and I/D-I/I, OR = 2.14, 95% CI = 1.18-3.87, P = 0.011, respectively), and the latter has a protective effect on the appearance of malaria (I/I, OR = 0.18, 95% CI = 0.08-0.40, P < 0.0001). After adjustment by age, sex, municipality, and genetic ancestry, genotype association analysis showed evidence of association with malaria susceptibility for variants in or near IL1B, TLR9, TREM1, IL10RA, and CD3G genes: rs1143629-IL1B (G/A-A/A, OR = 0.41, 95% CI = 0.21-0.78, P = 0.0051), rs352139-TLR9 (T/T, OR = 0.28, 95% CI = 0.11-0.72, P = 0.0053), rs352140-TLR9 (C/C, OR = 0.41, 95% CI = 0.20-0.87, P = 0.019), rs2234237-TREM1 (T/A-A/A, OR = 0.43, 95% CI = 0.23-0.79, P = 0.0056), rs4252246-IL10RA (C/A-A/A, OR = 2.11, 95% CI = 1.18-3.75, P = 0.01), and rs1561966-CD3G (A/A, OR = 0.20, 95% CI = 0.06-0.69, P = 0.0058). The results showed the participation of genes involved in immunological processes and suggested an effect of ancestral genetic composition over the traits analyzed. Compared to the paisa population (Antioquia), Turbo and El Bagre showed a strong decrease in European ancestry and an increase in African and Native American ancestries. Also, a novel association of two single nucleotide polymorphisms with malaria susceptibility was identified in this study.


Subject(s)
American Indian or Alaska Native/genetics , Disease Susceptibility , Genetic Predisposition to Disease , Genetic Variation , Genotype , Malaria/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Child , Colombia/epidemiology , Female , Gene Expression Regulation, Viral , Humans , Interleukin-1beta/genetics , Malaria/epidemiology , Male , Phenotype , Toll-Like Receptor 9 , Triggering Receptor Expressed on Myeloid Cells-1 , Young Adult
11.
Malar J ; 19(1): 157, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32299449

ABSTRACT

BACKGROUND: The indigenous population is considered a highly susceptible group to malaria because individuals usually live in areas with high exposure to Anopheles and poverty, and have limited access to health services. There is a great diversity of indigenous communities in Colombia living in malaria-endemic areas; however, the burden of infection in these populations has not been studied extensively. This study aimed to determine the prevalence of Plasmodium infections in indigenous and non-indigenous communities in two malaria-endemic areas in Colombia. METHODS: A community-based cross-sectional survey was conducted in seven villages of Turbo and El Bagre municipalities; three of these villages were indigenous communities. Inhabitants of all ages willing to participate were included. Sociodemographic and clinical data were recorded as well as household information. The parasitological diagnosis was performed by microscopy and nested PCR. The prevalence of microscopy and submicroscopic infection was estimated. An adjusted GEE model was used to explore risk factors associated with the infection. RESULTS: Among 713 participants, 60.7% were from indigenous communities. Plasmodium spp. was detected in 30 subjects (4.2%, CI 95% 2.9-5.9); from those, 29 were in the indigenous population, 47% of infections were afebrile, and most of them submicroscopic (10/14). Microscopic and submicroscopic prevalence was 2.5% (CI 95% 1.6-3.9) and 1.7% (CI 95% 0.9-2.9), respectively. In El Bagre, all infections occurred in indigenous participants (3.9%, CI 95% 2.2-7.1), and 81% were submicroscopic. By contrast, in Turbo, the highest prevalence occurred in indigenous people (11.5%; CI 95%: 7.3-17.5), but 88.8% were microscopic. Living in an indigenous population increased the prevalence of infection compared with a non-indigenous population (PR 19.4; CI 95% 2.3-166.7). CONCLUSION: There is a high proportion of Plasmodium infection in indigenous communities. A substantial proportion of asymptomatic and submicroscopic carriers were detected. The identification of these infections, not only in indigenous but also in the non-indigenous population, as well as their associated factors, could help to implement specific malaria strategies for each context.


Subject(s)
Indians, South American/statistics & numerical data , Malaria/epidemiology , Colombia/epidemiology , Cross-Sectional Studies , Humans , Malaria/parasitology , Microscopy , Polymerase Chain Reaction , Prevalence , Risk Factors
13.
3 Biotech ; 8(11): 471, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30456005

ABSTRACT

The establishment of a simple, rapid and efficient transient expression system is a necessary tool for the functional validation of candidate genes in coffee biotechnology. The effects of Agrobacterium strain, age of the donor plant, infiltration method, and infiltration medium on transgene expression in detached coffee leaves were evaluated. Regarding the effect of Agrobacterium strain, the expression of uidA was higher in GV3101-treated coffee disks than in LBA4404 and ATHV-treated samples. On the other hand, transient expression of uidA was significantly higher in leaf disks from young plants (6-weeks-old) (13.1 ± 1.4%) than in mature tissue (12-weeks-old) (1.6 ± 1.2%). Transient uidA expression was higher in detached coffee leaf disks from young plants infiltrated with one injection of 15 µL of Agrobacterium strain GV3101::1303 suspended in MS salts supplemented with 30 g/L sucrose, 1.9 g/L MES and 200 uM AS with subsequent sanding of the abaxial epidermis. Using the optimized protocol, expression of the uidA gene was observed 6, 24 and 48 h and 5 weeks after bacterial injection. DNA was extracted from coffee disks with positive GUS expression and specific mgfp5 and uidA fragments were amplified 5 weeks post-agroinfiltration. On the other hand, using the optimized protocol, a specific cry10Aa (500 bp) fragment was amplified in the agro-infiltrated coffee leaf disks 5 weeks post-agroinfiltration with the plasmid pB427-35S-cry10Aa. Moreover, the expression of the gene cry10Aa in two infiltrated coffee leaf disks was verified by RT-PCR and an expected 500 bp fragment was amplified.

14.
Toxins (Basel) ; 10(2)2018 02 17.
Article in English | MEDLINE | ID: mdl-29462980

ABSTRACT

The Colombian rattlesnake Crotalus durissus cumanensis is distributed in three geographic zones of the country: the Atlantic Coast, the upper valley of the Magdalena River, and the eastern plains of the Colombian Orinoquía. Its venom induces neurological symptoms, such as eyelid ptosis, myasthenic facies, and paralysis of the respiratory muscles, which can lead to death. Identification and analysis of C. d. cumanensis showed nine groups of proteins responsible for the neurotoxic effect, of which the crotoxin complex was the most abundant (64.71%). Immunorecognition tests of C. d. cumanensis showed that the use of a commercial antivenom manufactured in Mexico resulted in immunoreactivity.


Subject(s)
Crotalid Venoms/chemistry , Crotalus , Reptilian Proteins/analysis , Animals , Antivenins/immunology , Colombia , Crotalid Venoms/immunology , Proteomics
15.
Microbes Infect ; 19(2): 132-141, 2017 02.
Article in English | MEDLINE | ID: mdl-27717894

ABSTRACT

The ability of Plasmodium falciparum infected erythrocytes (Pf-IEs) to activate endothelial cells has been described; however, the interaction of the endothelium with Pf-IEs field isolates from patients has been less characterized. Previous reports have shown that isolates alter the endothelial permeability and apoptosis. In this study, the adhesion of 19 uncomplicated malaria isolates to Human Dermal Microvascular Endothelial Cells (HDMEC), and their effect on the expression of ICAM-1 and proinflammatory molecules (sICAM-1, IL-6, IL-8, and MCP-1) was evaluated. P. falciparum isolates adhered to resting and TNFα-activated HDEMC cells at different levels. All isolates increased the ICAM-1 expression on the membrane (mICAM-1) of HDMEC and increased the release of its soluble form (sICAM-1), as well the production of IL-6, IL-8 and MCP-1 by HDMEC with no signs of cell apoptosis. No correlation between parasite adhesion and production of cytokines was observed. In conclusion, isolates from uncomplicated malaria can induce a proinflammatory response in endothelial cells that may play a role during the initial inflammatory response to parasite infection; however, a continuous activation of the endothelium can contribute to pathogenesis.


Subject(s)
Cell Adhesion , Endothelial Cells/pathology , Endothelial Cells/parasitology , Inflammation , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Cells, Cultured , Humans , Immunologic Factors/analysis , Plasmodium falciparum/isolation & purification
16.
Lima; s.n; 2015. 47 p. tab, graf.
Thesis in Spanish | LIPECS | ID: biblio-1113875

ABSTRACT

Objetivo: Determinar las características clínicas-epidemiológicas para la conversión de la colecistectomía laparoscópica electiva a colecistectomía abierta del Hospital Nacional Arzobispo Loayza en el año 2013. Material y Métodos: Estudio descriptivo, retrospectivo, se recolectaron los casos de conversión de colecistectomía laparoscópica electiva a cirugía abierta y la información se obtuvo de los reportes operatorios e historias clínicas. La población fue de 80 casos de 18 a 92 años. Análisis de las variables epidemiológicas, clínicas, bioquímicas y de imágenes diagnósticas, identificación de la tasa de conversión. Resultados: 74 casos fueron incluidos en el estudio. El principal motivo de conversión fue la no identificación del Triangulo de Calot (54.05 por ciento). La conversión de colecistectomía laparoscópica a cirugía abierta predomino en el sexo femenino (59.46 por ciento). La edad promedio de los casos fue de 52.28 años, y el grupo de edad más frecuente fue el comprendido entre 51 a 70 años. En un 58.11 por ciento de los casos tenían antecedente de cirugía abdominal previa. Lo valores de bilirrubina total (>1.2mg/dl) fueron el 32.43 por ciento de los casos. El 66.22 por ciento de los casos presentó un grosor de la pared vesicular mayor a 4mm. En la mayoría de los casos presentaron cálculos en la vesícula (97.3 por ciento). El diagnóstico preoperatorio y postoperatorio más frecuente fue la colecistitis crónica (51.35 por ciento) y el plastrón vesicular (21.62 por ciento) respectivamente. El 17.57 por ciento de los casos presentó alguna complicación postoperatoria. La estancia hospitalaria preoperatoria y postoperatoria fueron 4.81 y 6.94 respectivamente. Conclusiones: La principal característica clínica-epidemiológica para la conversión de la colecistectomía laparoscópica electiva a colecistectomía abierta fue la no identificación del Triángulo de Calot.


Objective: To determine the clinical and epidemiological characteristics for the conversion of elective laparoscopic cholecystectomie to open cholecystectomie in National Hospital Archbishop Loayza during 2013. Methods and Materials: Descriptive, retrospective study. Clinical charts and surgical reports of cases with conversion from elective laparoscopic cholecystectomy to open cholecystectomy were reviewed. Population consisted of 80 cases from 18 to 92 years of age. Epidemiological, clinical, biochemical and imaging variables were analyzed and rate of conversion was identified. Results: 74 cases were included in the study. Main reason for conversion was the inability to identify Calots Triangle (54.05 per cent). Conversion mostly happened with female patients (59.45 per cent). Mean age was 52.28 years and the age group most frequently converted was between 51 to 70 years. 58.11 per cent of cases had previous history of abdominal surgery, 32.43 per cent had total bilirubin levels >1.2 mg/dL, 66.22 per cent had a gallbladder wall thickness of more than 4 mm; 97.3 per cent had gallbladder calculi. The most common pre and post operatory diagnosis were: chronic cholecystitis (51.35 per cent) and gallbladder phlegmon (21.62 per cent). 17.57 per cent of cases had post operatory complications. Pre and post operatory hospital stay were 4.81 and 6.94 days on average respectively. Conclusions: The main clinical and epidemiological characteristic for the conversion of elective laparoscopic cholecystectomie to open cholecystectomie for conversion was the inability to identify Calots Triangle.


Subject(s)
Male , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Cholecystectomy, Laparoscopic , Cholecystitis, Acute/surgery , Intraoperative Complications , Conversion to Open Surgery , Retrospective Studies
17.
Antimicrob Agents Chemother ; 58(11): 6354-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25114141

ABSTRACT

The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P < 0.001). The IC50s of CQ and AS were higher in the isolates from mature Tfz (CQ, 39.3 nM versus 17 nM; AS, 1.4 nM versus 0.3 nM), and 10% of the isolates showed lower susceptibilities to one of the antimalarial drugs, 13.3% to two antimalarial drugs, and 3.3% to more than three antimalarial drugs. It should be highlighted that despite the extensive use of chloroquine in Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia.


Subject(s)
Antimalarials/pharmacology , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Amodiaquine/pharmacology , Artemisinins/pharmacology , Artesunate , Chloroquine/pharmacology , Colombia , Drug Resistance , Malaria, Vivax/parasitology , Mefloquine/pharmacology , Parasitic Sensitivity Tests , Plasmodium vivax/isolation & purification , Quinine/pharmacology
18.
Biomedica ; 34(2): 237-49, 2014.
Article in English | MEDLINE | ID: mdl-24967929

ABSTRACT

INTRODUCTION: Despite efforts to control malaria, around 10% of the world population is at risk of acquiring this disease. Plasmodium falciparum accounts for the majority of severe cases and deaths. Malaria control programs have failed due to the therapeutic failure of first-line antimalarials and to parasite resistance. Thus, new and better therapeutic alternatives are required. Proteomic analysis allows determination of protein expression levels under drug pressure, leading to the identification of new therapeutic drug targets and their mechanisms of action. OBJECTIVE: The aim of this study was to analyze qualitatively the expression of P.falciparum trophozoite proteins (strain ITG2), after exposure to antimalarial drugs, through a proteomic approach. MATERIALS AND METHODS: In vitro cultured synchronized parasites were treated with quinine, mefloquine and the natural antiplasmodial diosgenone. Protein extracts were prepared and analyzed by two-dimensional electrophoresis. The differentially expressed proteins were selected and identified by MALDI-TOF mass spectrometry. RESULTS: The following proteins were identified among those differentially expressed in the parasite in the presence of the drugs tested: enolase (PF10_0155), calcium-binding protein (PF11_0098), chaperonin (PFL0740c), the host cell invasion protein (PF10_0268) and proteins related to redox processes (MAL8P1.17). These findings are consistent with results of previous studies where the parasite was submitted to pressure with other antimalarial drugs. CONCLUSION: The observed changes in the P. falciparum trophozoite protein profile induced by antimalarial drugs involved proteins mainly related to the general stress response.


Subject(s)
Antiprotozoal Agents/pharmacology , Mefloquine/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/biosynthesis , Quinine/pharmacology , Spiro Compounds/pharmacology , Triterpenes/pharmacology , Amino Acid Sequence , Electrophoresis, Gel, Two-Dimensional , Erythrocytes/parasitology , Gene Expression Regulation/drug effects , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/isolation & purification , Humans , In Vitro Techniques , Inhibitory Concentration 50 , Molecular Sequence Data , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Proteome , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Biomédica (Bogotá) ; 34(2): 237-249, abr.-jun. 2014. ilus, tab
Article in English | LILACS | ID: lil-712406

ABSTRACT

Introduction: Despite efforts to control malaria, around 10% of the world population is at risk of acquiring this disease. Plasmodium falciparum accounts for the majority of severe cases and deaths. Malaria control programs have failed due to the therapeutic failure of first-line antimalarials and to parasite resistance. Thus, new and better therapeutic alternatives are required. Proteomic analysis allows determination of protein expression levels under drug pressure, leading to the identification of new therapeutic drug targets and their mechanisms of action. Objective: The aim of this study was to analyze qualitatively the expression of P.falciparum trophozoite proteins (strain ITG2), after exposure to antimalarial drugs, through a proteomic approach. Materials and methods: In vitro cultured synchronized parasites were treated with quinine, mefloquine and the natural antiplasmodial diosgenone. Protein extracts were prepared and analyzed by two-dimensional electrophoresis. The differentially expressed proteins were selected and identified by MALDI-TOF mass spectrometry. Results: The following proteins were identified among those differentially expressed in the parasite in the presence of the drugs tested: enolase (PF10_0155), calcium-binding protein (PF11_0098), chaperonin (PFL0740c), the host cell invasion protein (PF10_0268) and proteins related to redox processes (MAL8P1.17). These findings are consistent with results of previous studies where the parasite was submitted to pressure with other antimalarial drugs. Conclusion: The observed changes in the P. falciparum trophozoite protein profile induced by antimalarial drugs involved proteins mainly related to the general stress response.


Introducción. A pesar de los esfuerzos para controlar la malaria, esta sigue siendo un problema de salud pública. Plasmodium falciparum es responsable de la mayoría de los casos graves y de las muertes. Los programas de control de la malaria han sido cuestionados debido al fracaso del tratamiento y a la resistencia del parásito a los antipalúdicos de primera línea, por lo que se requieren nuevas y mejores alternativas. El análisis proteómico permite identificar y determinar los niveles de expresión de las proteínas bajo la presión de los medicamentos, lo que posibilita la identificación de nuevos blancos terapéuticos y mecanismos de acción. Objetivo. Analizar cualitativamente la expresión diferencial de proteínas del citosol del trofozoíto de P. falciparum bajo tratamiento con quinina, mefloquina y el compuesto natural diosgenona mediante una aproximación proteómica. Materiales y métodos. Se trataron trofozoítos sincronizados y cultivados in vitro de P. falciparum (cepa ITG2) con quinina, mefloquina y el compuesto natural diosgenona. Los extractos proteicos se prepararon y analizaron por electroforesis bidimensional. Las proteínas con aparente expresión diferencial se seleccionaron e identificaron mediante espectrometría de masas MALDI-TOF. Resultados. Se encontraron las siguientes proteínas diferencialmente expresadas en el trofozoíto: la enolasa (PF10_0155), la proteína de unión a calcio (PF11_0098), la chaperonina (PFL0740c), la proteína de invasión a la célula del huésped (PF10_0268) y la proteína relacionada con procesos de reducción y oxidación (redox) (MAL8P1.17). Estos hallazgos son congruentes con resultados previos de estudios en los que el parásito fue presionado con otros medicamentos antipalúdicos. Conclusión. Los cambios observados en el perfil de proteínas del trofozoíto de P. falciparum tratado con antipalúdicos involucraron preferencialmente proteínas relacionadas con la respuesta al estrés general.


Subject(s)
Humans , Antiprotozoal Agents/pharmacology , Mefloquine/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/biosynthesis , Quinine/pharmacology , Spiro Compounds/pharmacology , Triterpenes/pharmacology , Amino Acid Sequence , Electrophoresis, Gel, Two-Dimensional , Erythrocytes/parasitology , Gene Expression Regulation/drug effects , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/isolation & purification , In Vitro Techniques , Molecular Sequence Data , Proteome , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
Sensors (Basel) ; 14(4): 7096-119, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24759112

ABSTRACT

This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.


Subject(s)
Computer Communication Networks , Home Care Services , Monitoring, Ambulatory , Software , Wireless Technology , Accidental Falls , Algorithms , Computer Security , Heart Rate , Humans , Internet , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...