Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 95(2): 730-738, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36574961

ABSTRACT

The mechanisms by which angiotensin II type 1 receptor is distributed and the diffusional pattern in the plasma membrane (PM) remain unclear, despite their crucial role in cardiovascular homeostasis. In this work, we obtained quantitative information of angiotensin II type 1 receptor (AT1R) lateral dynamics as well as changes in the diffusion properties after stimulation with ligands in living cells using photoactivated localization microscopy (PALM) combined with image spatial-temporal correlation analysis. To study the organization of the receptor at the nanoscale, expansion microscopy (ExM) combined with PALM was performed. This study revealed that AT1R lateral diffusion increased after binding to angiotensin II (Ang II) and the receptor diffusion was transiently confined in the PM. In addition, ExM revealed that AT1R formed nanoclusters at the PM and the cluster size significantly decreased after Ang II treatment. Taking these results together suggest that Ang II binding and activation cause reorganization and changes in the dynamics of AT1R at the PM.


Subject(s)
Angiotensin II , Receptor, Angiotensin, Type 1 , Receptor, Angiotensin, Type 1/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Microscopy , Cell Membrane/metabolism
2.
Biophys Rep (N Y) ; 1(2): 100015, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-36425455

ABSTRACT

We present a fluorescence fluctuation image correlation analysis method that can rapidly and simultaneously measure the diffusion coefficient, photoblinking rates, and fraction of diffusing particles of fluorescent molecules in cells. Unlike other image correlation techniques, we demonstrated that our method could be applied irrespective of a nonuniformly distributed, immobile blinking fluorophore population. This allows us to measure blinking and transport dynamics in complex cell morphologies, a benefit for a range of super-resolution fluorescence imaging approaches that rely on probe emission blinking. Furthermore, we showed that our technique could be applied without directly accounting for photobleaching. We successfully employed our technique on several simulations with realistic EMCCD noise and photobleaching models, as well as on Dronpa-C12-labeled ß-actin in living NIH/3T3 and HeLa cells. We found that the diffusion coefficients measured using our method were consistent with previous literature values. We further found that photoblinking rates measured in the live HeLa cells varied as expected with changing excitation power.

3.
ACS Nano ; 13(10): 11955-11966, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31513377

ABSTRACT

Super-resolution fluorescence imaging based on localization microscopy requires tuning the photoblinking properties of fluorescent dyes employed. Missing is a rapid way to analyze the blinking rates of the fluorophore probes. Herein we present an ensemble autocorrelation technique for rapidly and simultaneously measuring photoblinking and bleaching rate constants from a microscopy image time series of fluorescent probes that is significantly faster than individual single-molecule trajectory analysis approaches. Our method is accurate for probe densities typically encountered in single-molecule studies as well as for higher density systems which cannot be analyzed by standard single-molecule techniques. We also show that we can resolve characteristic blinking times that are faster than camera detector exposure times, which cannot be accessed by threshold-based single-molecule approaches due to aliasing. We confirm this through computer simulation and single-molecule imaging data of DNA-Cy5 complexes. Finally, we demonstrate that with sufficient sampling our technique can accurately recover rates from stochastic optical reconstruction microscopy super-resolution data.

4.
Biophys J ; 116(10): 2009-2022, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31053261

ABSTRACT

The skeleton constantly interacts and adapts to the physical world. We have previously reported that physiologically relevant mechanical forces lead to small repairable membrane injuries in bone-forming osteoblasts, resulting in release of ATP and stimulation of purinergic (P2) calcium responses in neighboring cells. The goal of this study was to develop a theoretical model describing injury-related ATP and ADP release, their extracellular diffusion and degradation, and purinergic responses in neighboring cells. After validation using experimental data for intracellular free calcium elevations, ATP, and vesicular release after mechanical stimulation of a single osteoblast, the model was scaled to a tissue-level injury to investigate how purinergic signaling communicates information about injuries with varying geometries. We found that total ATP released, peak extracellular ATP concentration, and the ADP-mediated signaling component contributed complementary information regarding the mechanical stimulation event. The total amount of ATP released governed spatial factors, such as the maximal distance from the injury at which purinergic responses were stimulated. The peak ATP concentration reflected the severity of an individual cell injury, allowing to discriminate between minor and severe injuries that released similar amounts of ATP because of differences in injury repair, and determined temporal aspects of the response, such as signal propagation velocity. ADP-mediated signaling became relevant only in larger tissue-level injuries, conveying information about the distance to the injury site and its geometry. Thus, we identified specific features of extracellular ATP and ADP spatiotemporal signals that depend on tissue mechanoresilience and encode the severity, scope, and proximity of the mechanical stimulus.


Subject(s)
Mechanical Phenomena , Purines/metabolism , Signal Transduction , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Membrane/metabolism , Mice , Mice, Inbred C57BL , Osteoblasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL