Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Metabolism ; 150: 155719, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935302

ABSTRACT

INTRODUCTION: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. METHODS: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. RESULTS: The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. CONCLUSIONS: The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.


Subject(s)
Amino Acids , Epigenesis, Genetic , F-Box Proteins , Jumonji Domain-Containing Histone Demethylases , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acids/genetics , Amino Acids/metabolism , Cell Line, Tumor , Chromatin , F-Box Proteins/genetics , F-Box Proteins/metabolism , Fibroblasts/metabolism , Glutamates/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
2.
J Hematol Oncol ; 16(1): 99, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626420

ABSTRACT

Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.


Subject(s)
Antibodies, Bispecific , Immunoconjugates , Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , T-Lymphocytes , Tumor Microenvironment
3.
Leukemia ; 37(10): 2094-2106, 2023 10.
Article in English | MEDLINE | ID: mdl-37598282

ABSTRACT

Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Humans , Cell Death , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Receptors, Fibroblast Growth Factor , Signal Transduction , Tumor Microenvironment/genetics
4.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37461630

ABSTRACT

Introduction: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. Methods: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. Results: The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. Conclusions: The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.

5.
Blood Adv ; 7(20): 6211-6224, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37327122

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Lymphoma, Mantle-Cell , Sulfonamides , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Quality of Life
6.
Blood ; 142(10): 887-902, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37267517

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.


Subject(s)
Lymphoma, Mantle-Cell , Phosphatidylinositol 3-Kinases , Adult , Humans , Cell Line, Tumor , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
7.
Exp Hematol ; 123: 28-33.e3, 2023 07.
Article in English | MEDLINE | ID: mdl-37209901

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive, noncurative, mature B-cell lymphoma, with a median overall survival of 6-7 years. This underlines a need for effective therapeutic strategies to treat MCL better. Epidermal growth factor-like 7 (EGFL7) is a protein secreted by endothelial cells shown to play a critical role in angiogenesis. Our laboratory has previously demonstrated that EGFL7 supports the growth of leukemic blasts in patients with acute myeloid leukemia (AML); however, its role in MCL has not been investigated yet. In this study, we report that EGFL7 messenger RNA (mRNA) is increased in the cells of patients with MCL compared with cells from healthy controls, and patients with high EGFL7 are associated with lower overall survival rates. Furthermore, EGFL7 is increased in the plasma of patients with MCL compared with the plasma from healthy controls. We further show that EGFL7 binds to epidermal growth factor receptor (EGFR) and activates AKT signaling pathway in MCL cells and that blocking EGFL7 in MCL in patient and cell lines decreases cell growth and increases apoptosis in vitro. Finally, anti-EGFL7 treatment inhibits tumor size and prolongs survival in a mouse model of MCL. In conclusion, our study reveals a role for EGFL7 in MCL cell proliferation and highlights EGFL7 inhibition as a promising new treatment for patients with MCL.


Subject(s)
Lymphoma, Mantle-Cell , Animals , Mice , Cell Line, Tumor , EGF Family of Proteins/metabolism , Endothelial Cells/metabolism , Lymphoma, Mantle-Cell/metabolism , Signal Transduction , Humans
8.
Exp Hematol Oncol ; 11(1): 40, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831896

ABSTRACT

BACKGROUND: Mantle cell lymphoma (MCL) is a rare, highly heterogeneous type of B-cell non-Hodgkin's lymphoma. The sumoylation pathway is known to be upregulated in many cancers including lymphoid malignancies. However, little is known about its oncogenic role in MCL. METHODS: Levels of sumoylation enzymes and sumoylated proteins were quantified in MCL cell lines and primary MCL patient samples by scRNA sequencing and immunoblotting. The sumoylation enzyme SAE2 was genetically and pharmacologically targeted with shRNA and TAK-981 (subasumstat). The effects of SAE2 inhibition on MCL proliferation and cell cycle were evaluated using confocal microscopy, live-cell microscopy, and flow cytometry. Immunoprecipitation and orbitrap mass spectrometry were used to identify proteins targeted by sumoylation in MCL cells. RESULTS: MCL cells have significant upregulation of the sumoylation pathway at the level of the enzymes SAE1 and SAE2 which correlated with poor prognosis and induction of mitosis associated genes. Selective inhibition of SAE2 with TAK-981 results in significant MCL cell death in vitro and in vivo with mitotic dysregulation being an important mechanism of action. We uncovered a sumoylation program in mitotic MCL cells comprised of multiple pathways which could be directly targeted with TAK-981. Centromeric localization of topoisomerase 2A, a gene highly upregulated in SAE1 and SAE2 overexpressing MCL cells, was lost with TAK-981 treatment likely contributing to the mitotic dysregulation seen in MCL cells. CONCLUSIONS: This study not only validates SAE2 as a therapeutic target in MCL but also opens the door to further mechanistic work to uncover how to best use desumoylation therapy to treat MCL and other lymphoid malignancies.

10.
Oncogene ; 41(4): 502-514, 2022 01.
Article in English | MEDLINE | ID: mdl-34782718

ABSTRACT

Bladder cancer (BLCA) is the most common malignant tumor of the urinary system and is characterized by high metastatic rates and poor prognosis. The expression of tight junction protein 1 (TJP1) is associated with bladder cancer invasion; however, the mechanism by which TJP1 affects vasculature remodeling remains unknown. In this study, we found that TJP1 expression correlated with tumor angiogenesis and poor overall survival in clinical samples. Furthermore, TJP1 overexpression promoted tumor angiogenesis in BLCA cells and stimulated recruitment of macrophages to tumors by upregulating CCL2 expression. Mechanistically, TJP1 interacted with TWIST1 and enhanced the transcriptional activity of CCL2. The impairment of tumor angiogenesis caused by knockdown of TJP1 was dramatically rescued by overexpression of TWIST1. Furthermore, TJP1 recruited USP2, which deubiquitinated TWIST1, thereby protecting TWIST1 from proteasome-mediated protein degradation. In conclusion, our results suggest that TJP1 controls angiogenesis in BLCA via TWIST1-dependent regulation of CCL2. We demonstrate that TJP1 functions as a scaffold for the interaction between USP2 and TWIST1 and this may provide potential therapeutic targets in bladder cancer.


Subject(s)
Ubiquitin Thiolesterase/metabolism , Urinary Bladder Neoplasms/genetics , Zonula Occludens-1 Protein/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Mice, Nude , Transfection , Urinary Bladder Neoplasms/pathology
12.
Front Oncol ; 11: 760789, 2021.
Article in English | MEDLINE | ID: mdl-34722316

ABSTRACT

Acute graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality following allogeneic hematopoietic cell transplantation. The majority of patients non-responsive to front line treatment with steroids have an estimated overall 2-year survival rate of only 10%. Bromodomain and extra-terminal domain (BET) proteins influence inflammatory gene transcription, and therefore represent a potential target to mitigate inflammation central to acute GVHD pathogenesis. Using potent and selective BET inhibitors Plexxikon-51107 and -2853 (PLX51107 and PLX2853), we show that BET inhibition significantly improves survival and reduces disease progression in murine models of acute GVHD without sacrificing the beneficial graft-versus-leukemia response. BET inhibition reduces T cell alloreactive proliferation, decreases inflammatory cytokine production, and impairs dendritic cell maturation both in vitro and in vivo. RNA sequencing studies in human T cells revealed that BET inhibition impacts inflammatory IL-17 and IL-12 gene expression signatures, and Chromatin Immunoprecipitation (ChIP)-sequencing revealed that BRD4 binds directly to the IL-23R gene locus. BET inhibition results in decreased IL-23R expression and function as demonstrated by decreased phosphorylation of STAT3 in response to IL-23 stimulation in human T cells in vitro as well as in mouse donor T cells in vivo. Furthermore, PLX2853 significantly reduced IL-23R+ and pathogenic CD4+ IFNγ+ IL-17+ double positive T cell infiltration in gastrointestinal tissues in an acute GVHD murine model. Our findings identify a role for BET proteins in regulating the IL-23R/STAT3/IL-17 pathway. Based on our preclinical data presented here, PLX51107 will enter clinical trial for refractory acute GVHD in a Phase 1 safety, biological efficacy trial.

13.
Commun Biol ; 4(1): 1179, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635782

ABSTRACT

AKT-phosphorylated IWS1 promotes Histone H3K36 trimethylation and alternative RNA splicing of target genes, including the U2AF65 splicing factor-encoding U2AF2. The predominant U2AF2 transcript, upon IWS1 phosphorylation block, lacks the RS-domain-encoding exon 2, and encodes a protein which fails to bind Prp19. Here we show that although both U2AF65 isoforms bind intronless mRNAs containing cytoplasmic accumulation region elements (CAR-E), only the RS domain-containing U2AF65 recruits Prp19 and promotes their nuclear export. The loading of U2AF65 to CAR-Elements was RS domain-independent, but RNA PolII-dependent. Virus- or poly(I:C)-induced type I IFNs are encoded by genes targeted by the pathway. IWS1 phosphorylation-deficient cells therefore, express reduced levels of IFNα1/IFNß1 proteins, and exhibit enhanced sensitivity to infection by multiple cytolytic viruses. Enhanced sensitivity of IWS1-deficient cells to Vesicular Stomatitis Virus and Reovirus resulted in enhanced apoptotic cell death via caspase activation. Inhibition of this pathway may therefore sensitize cancer cells to oncolytic viruses.

14.
Nat Commun ; 12(1): 4624, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330897

ABSTRACT

AKT-phosphorylated IWS1 regulates alternative RNA splicing via a pathway that is active in lung cancer. RNA-seq studies in lung adenocarcinoma cells lacking phosphorylated IWS1, identified a exon 2-deficient U2AF2 splice variant. Here, we show that exon 2 inclusion in the U2AF2 mRNA is a cell cycle-dependent process that is regulated by LEDGF/SRSF1 splicing complexes, whose assembly is controlled by the IWS1 phosphorylation-dependent deposition of histone H3K36me3 marks in the body of target genes. The exon 2-deficient U2AF2 mRNA encodes a Serine-Arginine-Rich (RS) domain-deficient U2AF65, which is defective in CDCA5 pre-mRNA processing. This results in downregulation of the CDCA5-encoded protein Sororin, a phosphorylation target and regulator of ERK, G2/M arrest and impaired cell proliferation and tumor growth. Analysis of human lung adenocarcinomas, confirmed activation of the pathway in EGFR-mutant tumors and showed that pathway activity correlates with tumor stage, histologic grade, metastasis, relapse after treatment, and poor prognosis.


Subject(s)
Adenocarcinoma of Lung/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA-Binding Proteins/genetics , Splicing Factor U2AF/genetics , Transcription Factors/genetics , A549 Cells , Adenocarcinoma of Lung/metabolism , Animals , Cell Line, Tumor , ErbB Receptors/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mutation , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Splicing Factor U2AF/metabolism , Transcription Factors/metabolism
15.
Cancers (Basel) ; 13(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946867

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton's tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug-tolerant form. The drug-tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug-resistant tumor is poorly understood. In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a multi-omics analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation, and pharmaceutical inhibition was further used to identify the key players contributing to the metabolic reprogramming of the drug-resistant clone. Gene-metabolite integration revealed interleukin four induced 1 (IL4I1) at the crosstalk of two significantly altered metabolic pathways involved in producing various amino acids. We showed for the first time that drug-resistant clones undergo metabolic reprogramming towards oxidative phosphorylation and are modulated via the BTK-PI3K-AKT-IL4I1 axis. Our report shows how these cells become dependent on PI3K/AKT signaling for survival after acquiring ibrutinib resistance and shift to sustained oxidative phosphorylation; additionally, we outline the compensatory pathway that might regulate this metabolic reprogramming in the drug-resistant cells. These findings from our unbiased analyses highlight the role of metabolic reprogramming during drug resistance development. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that drive metabolic deregulation in cancer cells.

16.
Cell Rep ; 34(11): 108870, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730585

ABSTRACT

Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.


Subject(s)
Adenine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Piperidines/therapeutic use , Transcription, Genetic , Adenine/pharmacology , Adenine/therapeutic use , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Drug Resistance, Neoplasm/drug effects , Enhancer Elements, Genetic/genetics , Humans , Lymphoma, Mantle-Cell/enzymology , Lymphoma, Mantle-Cell/pathology , Male , Mice, Inbred NOD , Mice, SCID , Piperidines/pharmacology , Protein Kinases/metabolism , RNA Polymerase II/metabolism , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transcriptome/genetics , Treatment Outcome
17.
Blood Adv ; 4(18): 4382-4392, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32926124

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-ß expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-ß/δ. Treatment with the selective PI3K-ß/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Phosphatidylinositol 3-Kinase , Agammaglobulinaemia Tyrosine Kinase , Cell Line, Tumor , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinases/genetics
18.
Cancers (Basel) ; 12(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455989

ABSTRACT

Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.

19.
Indian J Crit Care Med ; 24(1): 77-79, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32148356

ABSTRACT

Tracheal injuries are one of the potentially fatal complications following laryngopharyngeal and esophageal surgeries. The patient developed tracheal rent during laryngopharyngoesophagectomy. The injury was diagnosed intraoperative and repaired. However, it did not heal, and the patient developed tracheopleural fistula. Right thoracotomy and latissimus dorsi flap was done under general anesthesia. Postsurgery, the patient was shifted to intensive care unit (ICU), where he developed respiratory distress not improving, with increasing oxygen flows. To avoid damage to the repair, under bronchoscopic guidance bilateral selective mainstem bronchial intubations were done using cuffed 5.0 mm regular endotracheal tubes (ETTs), and ventilation was supported on pressure control ventilation mode. The ventilator support was weaned off to pressure support ventilation mode on postoperative day (POD) 1. On POD2, ETTs were removed under bronchoscopic guidance and were replaced by 7 mm ID long and adjustable flange tracheostomy tube with the tip just above the carina. The cuff was kept deflated, and oxygen with the high flow was provided through a tracheostomy. The high flow was weaned off after 5 days. Later, the patient was managed conservatively by regular chest physiotherapy, antibiotics, bronchoscopic pulmonary toileting, nebulizations, and appropriate antimicrobial therapy. Patient was discharged in stable condition from ICU and hospital. HOW TO CITE THIS ARTICLE: Arora J, Sehgal L, Satpathy H. Intensive Care Unit Management of a Patient with Tracheal Rent Repair Following Laryngopharyngoesophagectomy. Indian J Crit Care Med 2020;24(1):77-79.

20.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019190

ABSTRACT

Lymphoma, a group of widely prevalent hematological malignancies of lymphocyte origin, has become the focus of significant clinical research due to their high propensity for refractory/relapsed (R/R) disease, leading to poor prognostic outcomes. The complex molecular circuitry in lymphomas, especially in the aggressive phenotypes, has made it difficult to find a therapeutic option that can salvage R/R disease. Furthermore, the association of lymphomas with the Bone Marrow (BM) microenvironment has been found to portend worse outcomes in terms of heightened chances of relapse and acquired resistance to chemotherapy. This review assesses the current therapy options in three distinct types of lymphomas: diffuse large B-cell lymphoma, follicular lymphoma and mantle cell lymphoma. It also explores the role of the BM tumor microenvironment as a secure 'niche' for lymphoma cells to grow, proliferate and survive. It further evaluates potential mechanisms through which the tumor cells can establish molecular connections with the BM cells to provide pro-tumor benefits, and discusses putative therapeutic strategies for disrupting the BM-lymphoma cell communication.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Marrow/pathology , Drug Resistance, Neoplasm , Lymphoma, B-Cell/pathology , Tumor Microenvironment/immunology , Bone Marrow/drug effects , Bone Marrow/immunology , Humans , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/immunology , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...