Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant J ; 115(1): 52-67, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36965091

ABSTRACT

By contrast to their conserved mammalian counterparts, plant long interspersed nuclear elements (LINEs) are highly variable, splitting into many low-copy families. Curiously, LINE families from the retrotransposable element (RTE) clade retain a stronger sequence conservation and hence reach higher copy numbers. The cause of this RTE-typical property is not yet understood, but would help clarify why some transposable elements are removed quickly, whereas others persist in plant genomes. Here, we bring forward a detailed study of RTE LINE structure, diversity and evolution in plants. For this, we argue that the nightshade family is the ideal taxon to follow the evolutionary trajectories of RTE LINEs, given their high abundance, recent activity and partnership to non-autonomous elements. Using bioinformatic, cytogenetic and molecular approaches, we detect 4029 full-length RTE LINEs across the Solanaceae. We finely characterize and manually curate a core group of 458 full-length LINEs in allotetraploid tobacco, show an integration event after polyploidization and trace hybridization by RTE LINE composition of parental genomes. Finally, we reveal the role of the untranslated regions (UTRs) as causes for the unique RTE LINE amplification and evolution pattern in plants. On the one hand, we detected a highly conserved motif at the 3' UTR, suggesting strong selective constraints acting on the RTE terminus. On the other hand, we observed successive rounds of 5' UTR cycling, constantly rejuvenating the promoter sequences. This interplay between exchangeable promoters and conserved LINE bodies and 3' UTR likely allows RTE LINEs to persist and thrive in plant genomes.


Subject(s)
Nicotiana , Retroelements , Animals , Retroelements/genetics , Nicotiana/genetics , 3' Untranslated Regions , Genome, Plant/genetics , Plants , Terminal Repeat Sequences/genetics , Evolution, Molecular , Phylogeny , Mammals
2.
BMC Bioinformatics ; 23(1): 40, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35030991

ABSTRACT

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) are ring-like DNA structures physically separated from the chromosomes with 100 bp to several megabasepairs in size. Apart from carrying tandemly repeated DNA, eccDNAs may also harbor extra copies of genes or recently activated transposable elements. As eccDNAs occur in all eukaryotes investigated so far and likely play roles in stress, cancer, and aging, they have been prime targets in recent research-with their investigation limited by the scarcity of computational tools. RESULTS: Here, we present the ECCsplorer, a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing techniques. Following Illumina-sequencing of amplified circular DNA (circSeq), the ECCsplorer enables an easy and automated discovery of eccDNA candidates. The data analysis encompasses two major procedures: first, read mapping to the reference genome allows the detection of informative read distributions including high coverage, discordant mapping, and split reads. Second, reference-free comparison of read clusters from amplified eccDNA against control sample data reveals specifically enriched DNA circles. Both software parts can be run separately or jointly, depending on the individual aim or data availability. To illustrate the wide applicability of our approach, we analyzed semi-artificial and published circSeq data from the model organisms Homo sapiens and Arabidopsis thaliana, and generated circSeq reads from the non-model crop plant Beta vulgaris. We clearly identified eccDNA candidates from all datasets, with and without reference genomes. The ECCsplorer pipeline specifically detected mitochondrial mini-circles and retrotransposon activation, showcasing the ECCsplorer's sensitivity and specificity. CONCLUSION: The ECCsplorer (available online at https://github.com/crimBubble/ECCsplorer ) is a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing data. The derived eccDNA targets are valuable for a wide range of downstream investigations-from analysis of cancer-related eccDNAs over organelle genomics to identification of active transposable elements.


Subject(s)
DNA, Circular , DNA , Chromosomes , Cytoplasm , DNA/genetics , DNA, Circular/genetics , High-Throughput Nucleotide Sequencing , Humans
3.
Ann Bot ; 128(3): 281-299, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33729490

ABSTRACT

BACKGROUND AND AIMS: Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS: Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS: Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS: Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Centromere , Genome, Plant/genetics , Retroelements , Sugars
4.
Ann Bot ; 127(1): 91-109, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33009553

ABSTRACT

BACKGROUND AND AIMS: Plant genomes contain many retrotransposons and their derivatives, which are subject to rapid sequence turnover. As non-autonomous retrotransposons do not encode any proteins, they experience reduced selective constraints leading to their diversification into multiple families, usually limited to a few closely related species. In contrast, the non-coding Cassandra terminal repeat retrotransposons in miniature (TRIMs) are widespread in many plants. Their hallmark is a conserved 5S rDNA-derived promoter in their long terminal repeats (LTRs). As sugar beet (Beta vulgaris) has a well-described LTR retrotransposon landscape, we aim to characterize TRIMs in beet and related genomes. METHODS: We identified Cassandra retrotransposons in the sugar beet reference genome and characterized their structural relationships. Genomic organization, chromosomal localization, and distribution of Cassandra-TRIMs across the Amaranthaceae were verified by Southern and fluorescent in situ hybridization. KEY RESULTS: All 638 Cassandra sequences in the sugar beet genome contain conserved LTRs and thus constitute a single family. Nevertheless, variable internal regions required a subdivision into two Cassandra subfamilies within B. vulgaris. The related Chenopodium quinoa harbours a third subfamily. These subfamilies vary in their distribution within Amaranthaceae genomes, their insertion times and the degree of silencing by small RNAs. Cassandra retrotransposons gave rise to many structural variants, such as solo LTRs or tandemly arranged Cassandra retrotransposons. These Cassandra derivatives point to an interplay of template switch and recombination processes - mechanisms that likely caused Cassandra's subfamily formation and diversification. CONCLUSIONS: We traced the evolution of Cassandra in the Amaranthaceae and detected a considerable variability within the short internal regions, whereas the LTRs are strongly conserved in sequence and length. Presumably these hallmarks make Cassandra a prime target for unequal recombination, resulting in the observed structural diversity, an example of the impact of LTR-mediated evolutionary mechanisms on the host genome.


Subject(s)
Amaranthaceae , Beta vulgaris , Evolution, Molecular , Genome, Plant , In Situ Hybridization, Fluorescence , Recombination, Genetic , Retroelements , Sugars , Terminal Repeat Sequences
5.
Plant J ; 103(1): 443-458, 2020 07.
Article in English | MEDLINE | ID: mdl-32056333

ABSTRACT

Short interspersed nuclear elements (SINEs) are small, non-autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS-I to SaliS-XI), comprising 27 077 full-length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3' end structure. These groups probably emerged during the 'salicoid duplication' (~65 million years ago) in the Salix-Populus progenitor and during the separation of the genus Salix (45-65 million years ago), respectively. In contrast to conserved 5' start motifs across species and SINE families, the 3' ends are highly variable in sequence and length. This extraordinary 3'-end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3' ends is accomplished by a displacement of older motifs, leading to various 3'-end subpopulations within the SaliS families.


Subject(s)
3' Flanking Region/genetics , Salicaceae/genetics , Short Interspersed Nucleotide Elements/genetics , Biological Evolution , Chromosome Mapping , Chromosomes, Plant/genetics , Conserved Sequence/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Phylogeny , Populus/genetics , Salix/genetics
6.
Plant J ; 101(3): 681-699, 2020 02.
Article in English | MEDLINE | ID: mdl-31610059

ABSTRACT

Repetitive sequences are ubiquitous components of eukaryotic genomes affecting genome size and evolution as well as gene regulation. Among them, short interspersed nuclear elements (SINEs) are non-coding retrotransposons usually shorter than 1000 bp. They contain only few short conserved structural motifs, in particular an internal promoter derived from cellular RNAs and a mostly AT-rich 3' tail, whereas the remaining regions are highly variable. SINEs emerge and vanish during evolution, and often diversify into numerous families and subfamilies that are usually specific for only a limited number of species. In contrast, at the 3' end of multiple plant SINEs we detected the highly conserved 'Angio-domain'. This 37 bp segment defines the Angio-SINE superfamily, which encompasses 24 plant SINE families widely distributed across 13 orders within the plant kingdom. We retrieved 28 433 full-length Angio-SINE copies from genome assemblies of 46 plant species, frequently located in genes. Compensatory mutations in and adjacent to the Angio-domain imply selective restraints maintaining its RNA structure. Angio-SINE families share segmental sequence similarities, indicating a modular evolution with strong Angio-domain preservation. We suggest that the conserved domain contributes to the evolutionary success of Angio-SINEs through either structural interactions between SINE RNA and proteins increasing their transpositional efficiency, or by enhancing their accumulation in genes.


Subject(s)
Embryophyta/genetics , Genome, Plant/genetics , Genomics , Short Interspersed Nucleotide Elements/genetics , Evolution, Molecular , Retroelements/genetics
7.
Bioinformatics ; 34(20): 3575-3577, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29762645

ABSTRACT

Summary: FlexiDot is a cross-platform dotplot suite generating high quality self, pairwise and all-against-all visualizations. To improve dotplot suitability for comparison of consensus and error-prone sequences, FlexiDot harbors routines for strict and relaxed handling of ambiguities and substitutions. Our shading modules facilitate dotplot interpretation and motif identification by adding information on sequence annotations and sequence similarities. Combined with collage-like outputs, FlexiDot supports simultaneous visual screening of large sequence sets, enabling dotplot use for routine analyses. Availability and implementation: FlexiDot is implemented in Python 2.7. Software and documentation are freely available at http://github.com/molbio-dresden/flexidot. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Sequence Analysis , Software , Humans
8.
Plant J ; 86(3): 268-85, 2016 05.
Article in English | MEDLINE | ID: mdl-26996788

ABSTRACT

Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.


Subject(s)
Genome, Plant , Short Interspersed Nucleotide Elements , Solanaceae/genetics , Chromosome Mapping , Chromosomes, Plant , Sequence Analysis, DNA , Species Specificity
9.
Plant J ; 85(2): 229-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26676716

ABSTRACT

Short interspersed nuclear elements (SINEs) are non-autonomous non-long terminal repeat retrotransposons which are widely distributed in eukaryotic organisms. While SINEs have been intensively studied in animals, only limited information is available about plant SINEs. We analysed 22 SINE families from seven genomes of the Amaranthaceae family and identified 34 806 SINEs, including 19 549 full-length copies. With the focus on sugar beet (Beta vulgaris), we performed a comparative analysis of the diversity, genomic and chromosomal organization and the methylation of SINEs to provide a detailed insight into the evolution and age of Amaranthaceae SINEs. The lengths of consensus sequences of SINEs range from 113 nucleotides (nt) up to 224 nt. The SINEs show dispersed distribution on all chromosomes but were found with higher incidence in subterminal euchromatic chromosome regions. The methylation of SINEs is increased compared with their flanking regions, and the strongest effect is visible for cytosines in the CHH context, indicating an involvement of asymmetric methylation in the silencing of SINEs.


Subject(s)
Amaranthaceae/genetics , Beta vulgaris/genetics , Evolution, Molecular , Genetic Variation , Genome, Plant/genetics , Short Interspersed Nucleotide Elements/genetics , DNA Methylation/genetics
10.
Methods Mol Biol ; 1245: 183-92, 2015.
Article in English | MEDLINE | ID: mdl-25373758

ABSTRACT

The unambiguous differentiation of crop genotypes is often laborious or expensive. A rapid, robust, and cost-efficient marker system is required for routine genotyping in plant breeding and marker-assisted selection. We describe the Inter-SINE Amplified Polymorphism (ISAP) system that is based on standard molecular methods resulting in genotype-specific fingerprints at high resolution. These markers are derived from Short Interspersed Nuclear Elements (SINEs) which are dispersed repetitive sequences present in most if not all plant genomes and can be efficiently extracted from plant genome sequences. The ISAP method was developed on potato as model plant but is also transferable to other plant species.


Subject(s)
Genotyping Techniques/methods , Polymorphism, Genetic , Short Interspersed Nucleotide Elements/genetics , Solanum tuberosum/genetics , Base Sequence , DNA Primers/metabolism , Electrophoresis, Agar Gel , Electrophoresis, Capillary , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Alignment , Statistics as Topic
11.
Chromosome Res ; 22(4): 559-71, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25377178

ABSTRACT

Sequencing of plant genomes often identified the hAT superfamily as the largest group of DNA transposons. Nevertheless, detailed information on the diversity, abundance and chromosomal localization of plant hAT families are rare. By in silico analyses of the reference genome assembly and bacterial artificial chromosome (BAC) sequences, respectively, we performed the classification and molecular characterization of hAT transposon families in Musa acuminata. Musa hAT transposons are organized in three families designated MuhAT I, MuhAT II and MuhAT III. In total, 70 complete autonomous elements of the MuhAT I and MuhAT II families were detected, while no autonomous MuhAT III transposons were found. Based on the terminal inverted repeat (TIR)-specific sequence information of the autonomous transposons, 1722 MuhAT I- and MuhAT II-specific miniature inverted-repeat transposable elements (MuhMITEs) were identified. Autonomous MuhAT I and MuhAT II elements are only moderately abundant in the sections of the genus Musa, while the corresponding MITEs exhibit an amplification in Musa genomes. By fluorescent in situ hybridization (FISH), autonomous MuhAT transposons as well as MuhMITEs were localized in subtelomeric, most likely gene-rich regions of M. acuminata chromosomes. A comparison of homoeologous regions of M. acuminata and Musa balbisiana BACs revealed the species-specific mobility of MuhMITEs. In particular, the activity of MuhMITEs II showing transduplications of genomic sequences might indicate the presence of active MuhAT transposons, thus suggesting a potential role of MuhMITEs as modulators of genome evolution of Musa.


Subject(s)
DNA Transposable Elements/genetics , Genome, Plant , Musa/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Phylogeny , Sequence Analysis, DNA , Species Specificity , Terminal Repeat Sequences/genetics
12.
Theor Appl Genet ; 125(1): 185-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22371142

ABSTRACT

Potato variety discrimination based on morphological traits is laborious and influenced by the environment, while currently applied molecular markers are either expensive or time-consuming in development or application. SINEs, short interspersed nuclear elements, are retrotransposons with a high copy number in plant genomes representing a potential source for new markers. We developed a marker system for potato genotyping, designated inter-SINE amplified polymorphism (ISAP). Based on nine potato SINE families recently characterized (Wenke et al. in Plant Cell 23:3117-3128, 2011), we designed species-specific SINE primers. From the resulting 153 primer combinations, highly informative primer sets were selected for potato variety analysis regarding number of bands, quality of the banding pattern, and the degree of polymorphism. Fragments representing ISAPs can be separated by conventional agarose gel electrophoresis; however, automation with a capillary sequencer is feasible. Two selected SINE families, SolS-IIIa and SolS-IV, were shown to be highly but differently amplified in Solanaceae, Solaneae tribe, including wild and cultivated potatoes, tomato, and eggplant. Fluorescent in situ hybridization demonstrated the genome-wide distribution of SolS-IIIa and SolS-IV along potato chromosomes, which is the basis for genotype discrimination and differentiation of somaclonal variants by ISAP markers.


Subject(s)
Genotyping Techniques/methods , Short Interspersed Nucleotide Elements/genetics , Solanum tuberosum/classification , Solanum tuberosum/genetics , Chromosomes, Plant/genetics , Cluster Analysis , Electrophoresis, Agar Gel , Genetic Markers , Genome, Plant/genetics , Genotype , In Situ Hybridization, Fluorescence , Mutation/genetics , Polymerase Chain Reaction , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...