Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37698934

ABSTRACT

Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures, and neurologic abnormalities (PASNA) as well as in autism spectrum disorder. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization showed elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone/renin ratio, and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induced tonic-clonic seizures. Neurologic abnormalities included hyperlocomotion, impaired performance in the rotarod test, impaired nest building, and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels, and rotarod performance responded to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.


Subject(s)
Adenoma , Autism Spectrum Disorder , Hyperaldosteronism , Humans , Male , Female , Mice , Animals , Aldosterone , Hyperaldosteronism/drug therapy , Hyperaldosteronism/genetics , Isradipine , Calcium , Mutation , Seizures
2.
Cell Death Differ ; 30(2): 442-456, 2023 02.
Article in English | MEDLINE | ID: mdl-36443441

ABSTRACT

Oncogenic KRAS is the key driver oncogene for several of the most aggressive human cancers. One key feature of oncogenic KRAS expression is an early increase in cellular reactive oxygen species (ROS) which promotes cellular transformation if cells manage to escape cell death, mechanisms of which remain incompletely understood. Here, we identify that expression of oncogenic as compared to WT KRAS in isogenic cellular systems renders cells more resistant to ferroptosis, a recently described type of regulated necrosis. Mechanistically, we find that cells with mutant KRAS show a specific lack of ferroptosis-induced lipid peroxidation. Interestingly, KRAS-mutant cells upregulate expression of ferroptosis suppressor protein 1 (FSP1). Indeed, elevated levels of FSP1 in KRAS-mutant cells are responsible for mediating ferroptosis resistance and FSP1 is upregulated as a consequence of MAPK and NRF2 pathway activation downstream of KRAS. Strikingly, FSP1 activity promotes cellular transformation in soft agar and its overexpression is sufficient to promote spheroid growth in 3D in KRAS WT cells. Moreover, FSP1 expression and its activity in ferroptosis inhibition accelerates tumor onset of KRAS WT cells in the absence of oncogenic KRAS in vivo. Consequently, we find that pharmacological induction of ferroptosis in pancreatic organoids derived from the LsL-KRASG12D expressing mouse model is only effective in combination with FSP1 inhibition. Lastly, FSP1 is upregulated in non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) as compared to the respective normal tissue of origin and correlates with NRF2 expression in PDAC patient datasets. Based on these data, we propose that KRAS-mutant cells must navigate a ferroptosis checkpoint by upregulating FSP1 during tumor establishment. Consequently, ferroptosis-inducing therapy should be combined with FSP1 inhibitors for efficient therapy of KRAS-mutant cancers.


Subject(s)
Apoptosis Regulatory Proteins , Carcinogenesis , Ferroptosis , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic , Lung Neoplasms/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Apoptosis Regulatory Proteins/metabolism , Pancreatic Neoplasms
3.
Cell Death Discov ; 8(1): 465, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435845

ABSTRACT

Human cancers are known to adhere to basic evolutionary principles. During their journey from early transformation to metastatic disease, cancer cell populations have proven to be remarkably adaptive to different forms of intra- and extracellular selective pressure, including nutrient scarcity, oxidative stress, and anti-cancer immunity. Adaption may be achieved via the expansion of clones bearing driver mutations that optimize cellular fitness in response to the specific selective scenario, e.g., mutations facilitating evasion of cell death, immune evasion or increased proliferation despite growth suppression, all of which constitute well-established hallmarks of cancer. While great progress concerning the prevention, diagnosis and treatment of clinically apparent disease has been made over the last 50 years, the mechanisms underlying cellular adaption under selective pressure via the immune system during early carcinogenesis and its influence on cancer cell fate or disease severity remain to be clarified. For instance, evasion of cell death is generally accepted as a hallmark of cancer, yet recent decades have revealed that the extrinsic cell death machinery triggered by immune effector cells is composed of an astonishingly complex network of interacting-and sometimes compensating-modes of cell death, whose role in selective processes during early carcinogenesis remains obscure. Based upon recent advances in cell death research, here we propose a concept of cell death pathway plasticity in time shaping cancer evolution prior to treatment in an effort to offer new perspectives on how cancer cell fate may be determined by cell death pathway plasticity during early carcinogenesis.

5.
Hepatology ; 76(4): 1135-1149, 2022 10.
Article in English | MEDLINE | ID: mdl-35218234

ABSTRACT

BACKGROUND AND AIMS: Growing evidence suggests an important role of B cells in the development of NAFLD. However, a detailed functional analysis of B cell subsets in NAFLD pathogenesis is lacking. APPROACH AND RESULTS: In wild-type mice, 21 weeks of high fat diet (HFD) feeding resulted in NAFLD with massive macrovesicular steatosis, modest hepatic and adipose tissue inflammation, insulin resistance, and incipient fibrosis. Remarkably, Bnull (JHT) mice were partially protected whereas B cell harboring but antibody-deficient IgMi mice were completely protected from the development of hepatic steatosis, inflammation, and fibrosis. The common feature of JHT and IgMi mice is that they do not secrete antibodies, whereas HFD feeding in wild-type mice led to increased levels of serum IgG2c. Whereas JHT mice have no B cells at all, regulatory B cells were found in the liver of both wild-type and IgMi mice. HFD reduced the number of regulatory B cells and IL-10 production in the liver of wild-type mice, whereas these increased in IgMi mice. Livers of patients with advanced liver fibrosis showed abundant deposition of IgG and stromal B cells and low numbers of IL-10 expressing cells, compatible with our experimental data. CONCLUSIONS: B lymphocytes have both detrimental and protective effects in HFD-induced NAFLD. The lack of secreted pathogenic antibodies protects partially from NAFLD, whereas the presence of certain B cell subsets provides additional protection. IL-10-producing regulatory B cells may represent such a protective B cell subset.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , B-Lymphocytes , Diet, High-Fat/adverse effects , Disease Models, Animal , Fibrosis , Immunoglobulin G , Inflammation/pathology , Insulin Resistance/physiology , Interleukin-10 , Liver/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879608

ABSTRACT

Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel CaV3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1hM1560V/+ knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h-/- ). Adrenal morphology of both Cacna1hM1560V/+ and Cacna1h-/- mice was normal. Cacna1hM1560V/+ mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism). Their adrenal Cyp11b2 (aldosterone synthase) expression was increased and remained elevated on a high-salt diet (relative autonomy, characteristic of primary aldosteronism), but plasma aldosterone was only elevated in male animals. The systolic blood pressure of Cacna1hM1560V/+ mice was 8 mmHg higher than in wild-type littermates and remained elevated on a high-salt diet. Cacna1h-/- mice had elevated renal Ren1 (renin-1) expression but normal adrenal Cyp11b2 levels, suggesting that in the absence of CaV3.2, stimulation of the renin-angiotensin system activates alternative calcium entry pathways to maintain normal aldosterone production. On a cellular level, Cacna1hM1560V/+ adrenal slices showed increased baseline and peak intracellular calcium concentrations in the zona glomerulosa compared to controls, but the frequency of calcium spikes did not rise. We conclude that FH-IV, on a molecular level, is caused by elevated intracellular Ca2+ concentrations as a signal for aldosterone production in adrenal glomerulosa cells. We demonstrate that a germline Cacna1h gain-of-function mutation is sufficient to cause mild primary aldosteronism, whereas loss of CaV3.2 channel function can be compensated for in a chronic setting.


Subject(s)
Calcium Signaling/physiology , Hyperaldosteronism/physiopathology , Aldosterone/biosynthesis , Animals , Blood Pressure , Calcium Channels/genetics , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Cytochrome P-450 CYP11B2/metabolism , Disease Models, Animal , Gain of Function Mutation , Hyperaldosteronism/metabolism , Hypertension/physiopathology , Male , Mice , Mice, Inbred C57BL , Mutation
7.
Exp Eye Res ; 194: 107990, 2020 05.
Article in English | MEDLINE | ID: mdl-32307097

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The senior author contacted the journal in a forthright manner, in an effort to preserve the scientific integrity of the literature, after discovering a significant error in the results reported in the article. The authors were recently made aware of a paper by Kim et al. (Nature Commun. 2019) which shows a spirosome structure (the enzyme aldehyde-alcohol dehydrogenase) present in E. coli (Fig. 5a) that is very similar to the structure the authors thought formed when synthetic alpha A crystallin (66-80) peptide was incubated for 24 h with recombinant guinea pig alpha A insert crystallin (see Kumarasamy et al. Figs. 7C and F, and Fig. 9). Subsequent to publication of their report, the authors later found a number of images that showed what appeared to be the same structure present in samples of their presumably purified recombinant guinea pig alpha A insert crystallin which had been incubated without peptide for 24 h. Hence, the authors now conclude that the structures shown in Figs. 7C and F, and Fig. 9 of their article published in this journal are actually due to E. coli contaminant aldehyde-alcohol dehydrogenase. The authors deeply regret this error and any inconvenience it may have caused.

8.
Endocr Connect ; 9(2): 122-134, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31910152

ABSTRACT

Mitotane is the only drug approved for the therapy of adrenocortical carcinoma (ACC). Its clinical use is limited by the occurrence of relapse during therapy. To investigate the underlying mechanisms in vitro, we here generated mitotane-resistant cell lines. After long-term pulsed treatment of HAC-15 human adrenocortical carcinoma cells with 70 µM mitotane, we isolated monoclonal cell populations of treated cells and controls and assessed their respective mitotane sensitivities by MTT assay. We performed exome sequencing and electron microscopy, conducted gene expression microarray analysis and determined intracellular lipid concentrations in the presence and absence of mitotane. Clonal cell lines established after pulsed treatment were resistant to mitotane (IC50 of 102.2 ± 7.3 µM (n = 12) vs 39.4 ± 6.2 µM (n = 6) in controls (biological replicates, mean ± s.d., P = 0.0001)). Unlike nonresistant clones, resistant clones maintained normal mitochondrial and nucleolar morphology during mitotane treatment. Resistant clones largely shared structural and single nucleotide variants, suggesting a common cell of origin. Resistance depended, in part, on extracellular lipoproteins and was associated with alterations in intracellular lipid homeostasis, including levels of free cholesterol, as well as decreased steroid production. By gene expression analysis, resistant cells showed profound alterations in pathways including steroid metabolism and transport, apoptosis, cell growth and Wnt signaling. These studies establish an in vitro model of mitotane resistance in ACC and point to underlying molecular mechanisms. They may enable future studies to overcome resistance in vitro and improve ACC treatment in vivo.

9.
Exp Mol Med ; 51(11): 1-12, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31695023

ABSTRACT

Primary aldosteronism is characterized by at least partially autonomous production of the adrenal steroid hormone aldosterone and is the most common cause of secondary hypertension. The most frequent subforms are idiopathic hyperaldosteronism and aldosterone-producing adenoma. Rare causes include unilateral hyperplasia, adrenocortical carcinoma and Mendelian forms (familial hyperaldosteronism). Studies conducted in the last eight years have identified somatic driver mutations in a substantial portion of aldosterone-producing adenomas, including the genes KCNJ5 (encoding inwardly rectifying potassium channel GIRK4), CACNA1D (encoding a subunit of L-type voltage-gated calcium channel CaV1.3), ATP1A1 (encoding a subunit of Na+/K+-ATPase), ATP2B3 (encoding a Ca2+-ATPase), and CTNNB1 (encoding ß-catenin). In addition, aldosterone-producing cells were recently reported to form small clusters (aldosterone-producing cell clusters) beneath the adrenal capsule. Such clusters accumulate with age and appear to be more frequent in individuals with idiopathic hyperaldosteronism. The fact that they are associated with somatic mutations implicated in aldosterone-producing adenomas also suggests a precursor function for adenomas. Rare germline variants of CYP11B2 (encoding aldosterone synthase), CLCN2 (encoding voltage-gated chloride channel ClC-2), KCNJ5, CACNA1H (encoding a subunit of T-type voltage-gated calcium channel CaV3.2), and CACNA1D have been reported in different subtypes of familial hyperaldosteronism. Collectively, these studies suggest that primary aldosteronism is largely due to genetic mutations in single genes, with potential implications for diagnosis and therapy.


Subject(s)
Hyperaldosteronism/etiology , Hyperaldosteronism/genetics , Adrenal Gland Diseases/etiology , Adrenal Gland Diseases/genetics , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Humans , Hypertension/etiology , Hypertension/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , beta Catenin/genetics , beta Catenin/metabolism
10.
Nat Commun ; 10(1): 5155, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727896

ABSTRACT

Gain-of-function mutations in the chloride channel ClC-2 were recently described as a cause of familial hyperaldosteronism type II (FH-II). Here, we report the generation of a mouse model carrying a missense mutation homologous to the most common FH-II-associated CLCN2 mutation. In these Clcn2R180Q/+ mice, adrenal morphology is normal, but Cyp11b2 expression and plasma aldosterone levels are elevated. Male Clcn2R180Q/+ mice have increased aldosterone:renin ratios as well as elevated blood pressure levels. The counterpart knockout model (Clcn2-/-), in contrast, requires elevated renin levels to maintain normal aldosterone levels. Adrenal slices of Clcn2R180Q/+ mice show increased calcium oscillatory activity. Together, our work provides a knockin mouse model with a mild form of primary aldosteronism, likely due to increased chloride efflux and depolarization. We demonstrate a role of ClC-2 in normal aldosterone production beyond the observed pathophysiology.


Subject(s)
Aldosterone/blood , Blood Pressure , Chloride Channels/genetics , Hyperaldosteronism/blood , Hyperaldosteronism/physiopathology , Mutation/genetics , Adrenal Glands/pathology , Amino Acid Sequence , Animals , Base Sequence , CLC-2 Chloride Channels , Chloride Channels/chemistry , Chlorides/urine , Cytochrome P-450 CYP11B2/metabolism , Disease Models, Animal , Female , Heterozygote , Hyperaldosteronism/urine , Male , Mice, Inbred C57BL , Phenotype , Renin/blood , Sodium/urine
11.
Exp Eye Res ; 179: 193-205, 2019 02.
Article in English | MEDLINE | ID: mdl-30448341

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The senior author contacted the journal in a forthright manner, in an effort to preserve the scientific integrity of the literature, after discovering a significant error in the results reported in the article. The authors were recently made aware of a paper by Kim et al. (Nature Commun. 2019) which shows a spirosome structure (the enzyme aldehyde-alcohol dehydrogenase) present in E. coli (Fig. 5a) that is very similar to the structure the authors thought formed when synthetic alpha A crystallin (66-80) peptide was incubated for 24 h with recombinant guinea pig alpha A insert crystallin (see Kumarasamy et al., Figs. 7C and F, and Fig. 9). Subsequent to publication of their report, the authors later found a number of images that showed what appeared to be the same structure present in samples of their presumably purified recombinant guinea pig alpha A insert crystallin which had been incubated without peptide for 24 h. Hence, the authors now conclude that the structures shown in Figs. 7C and F, and Fig. 9 of their article published in this journal are actually due to E. coli contaminant aldehyde-alcohol dehydrogenase. The authors deeply regret this error and any inconvenience it may have caused.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Lens, Crystalline/drug effects , Peptide Fragments/pharmacology , Protein Aggregates , Temperature , alpha-Crystallin A Chain/metabolism , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Guinea Pigs , Humans , Hydrogen-Ion Concentration , Lens, Crystalline/metabolism , Lens, Crystalline/ultrastructure , Microscopy, Electron, Transmission , Molecular Sequence Data , Recombinant Proteins
12.
Physiol Genomics ; 49(11): 630-652, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28887369

ABSTRACT

Hypertension, or elevated blood pressure, constitutes a major public health burden that affects more than 1 billion people worldwide and contributes to ~9 million deaths annually. Hereditary factors are thought to contribute to up to 50% of interindividual blood pressure variability. Blood pressure in the general population approximately shows a normal distribution and is thought to be a polygenic trait. In rare cases, early-onset hypertension or hypotension are inherited as Mendelian traits. The identification of the underlying Mendelian genes and variants has contributed to our understanding of the physiology of blood pressure regulation, emphasizing renal salt handling and the renin angiotensin aldosterone system as players in the determination of blood pressure. Genome-wide association studies (GWAS) have revealed more than 100 variants that are associated with blood pressure, typically with small effect sizes, which cumulatively explain ~3.5% of blood pressure trait variability. Several GWAS associations point to a role of the vasculature in the pathogenesis of hypertension. Despite these advances, the majority of the genetic contributors to blood pressure regulation are currently unknown; whether large-scale exome or genome sequencing studies will unravel these factors remains to be determined.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Animals , Disease Models, Animal , Humans , Hypertension/physiopathology , Multifactorial Inheritance/genetics , Mutation/genetics , Public Health
13.
Article in English | MEDLINE | ID: mdl-27445978

ABSTRACT

The adrenal cortex is a major site of steroid hormone production. Two hormones are of particular importance: aldosterone, which is produced in the zona glomerulosa in response to volume depletion and hyperkalemia, and cortisol, which is produced in the zona fasciculata in response to stress. In both cases, acute stimulation leads to increased hormone production, and chronic stimulation causes hyperplasia of the respective zone. Aldosterone- and cortisol-producing adenomas (APAs and CPAs) are benign tumors of the adrenal cortex that cause excess hormone production, leading to primary aldosteronism and Cushing's syndrome, respectively. About 40% of the APAs carry somatic heterozygous gain-of-function mutations in the K(+) channel KCNJ5. These mutations lead to sodium permeability, depolarization, activation of voltage-gated Ca(2+) channels, and Ca(2+) influx. Mutations in the Na(+)/K(+)-ATPase subunit ATP1A1 and the plasma membrane Ca(2+)-ATPase ATP2B3 similarly cause Na(+) or H(+) permeability and depolarization, whereas mutations in the Ca(2+) channel CACNA1D directly lead to increased calcium influx. One in three CPAs carries a recurrent gain-of-function mutation (L206R) in the PRKACA gene, encoding the catalytic subunit of PKA. This mutation causes constitutive PKA activity by abolishing the binding of the inhibitory regulatory subunit to the catalytic subunit. These mutations activate pathways that are relatively specific to the respective cell type (glomerulosa versus fasciculata), and there is little overlap in mutation spectrum between APAs and CPAs, but co-secretion of both hormones can occur. Mutations in CTNNB1 (beta-catenin) and GNAS (Gsα) are exceptions, as they can cause both APAs and CPAs through pathways that are incompletely understood.

14.
Endocrinology ; 157(8): 3016-22, 2016 08.
Article in English | MEDLINE | ID: mdl-27258646

ABSTRACT

We recently demonstrated that a recurrent gain-of-function mutation in a T-type calcium channel, CACNA1H(M1549V), causes a novel Mendelian disorder featuring early-onset primary aldosteronism and hypertension. This variant was found independently in five families. CACNA1H(M1549V) leads to impaired channel inactivation and activation at more hyperpolarized potentials, inferred to cause increased calcium entry. We here aimed to study the effect of this variant on aldosterone production. We heterologously expressed empty vector, CACNA1H(WT) and CACNA1H(M1549V) in the aldosterone-producing adrenocortical cancer cell line H295R and its subclone HAC15. Transfection rates, expression levels, and subcellular distribution of the channel were similar between CACNA1H(WT) and CACNA1H(M1549V). We measured aldosterone production by an ELISA and CYP11B2 (aldosterone synthase) expression by real-time PCR. In unstimulated cells, transfection of CACNA1H(WT) led to a 2-fold increase in aldosterone levels compared with vector-transfected cells. Expression of CACNA1H(M1549V) caused a 7-fold increase in aldosterone levels. Treatment with angiotensin II or increased extracellular potassium levels further stimulated aldosterone production in both CACNA1H(WT)- and CACNA1H(M1549V)-transfected cells. Similar results were obtained for CYP11B2 expression. Inhibition of CACNA1H channels with the T-type calcium channel blocker Mibefradil completely abrogated the effects of CACNA1H(WT) and CACNA1H(M1549V) on CYP11B2 expression. These results directly link CACNA1H(M1549V) to increased aldosterone production. They suggest that calcium channel blockers may be beneficial in the treatment of a subset of patients with primary aldosteronism. Such blockers could target CACNA1H or both CACNA1H and the L-type calcium channel CACNA1D that is also expressed in the adrenal gland and mutated in patients with primary aldosteronism.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Aldosterone/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/genetics , Mibefradil/pharmacology , Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Amino Acid Substitution , Cell Line, Tumor , Down-Regulation/drug effects , Down-Regulation/genetics , Humans , Hyperaldosteronism/genetics , Hyperaldosteronism/metabolism , Methionine/genetics , Valine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...