Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
Schmerz ; 34(5): 447-459, 2020 Oct.
Article in German | MEDLINE | ID: mdl-32734404

ABSTRACT

In this article we address the relevance of rare diseases and their peculiarities with respect to pain therapy. Towards this end, four rare diseases (hemophilia, Morbus Fabry, dermatomyositis, and facioscapulohumeral dystrophy (FSHD)) will be presented and fundamental aspects of their pain therapies described. The diseases were chosen to showcase a pain therapy based on the WHO-step-by-step plan (hemophilia), a complex but established pain therapy (M. Fabry), and two less well established, individually adapted pain therapies (dermatomyositis, FSHD).


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Pain Management , Rare Diseases , Humans , Muscular Dystrophy, Facioscapulohumeral/therapy , Rare Diseases/complications
2.
Schmerz ; 34(3): 285-296, 2020 Jun.
Article in German | MEDLINE | ID: mdl-32367470

ABSTRACT

Sickle cell disease is associated with numerous symptoms and complications. Acute painful crisis is the most characteristic manifestation of the disease. In addition, many patients report chronic pain. As both acute and chronic pain severely diminish quality of life, adequate pain management is crucial. Recommendations for the treatment of acute painful crises are based on the World Health Organization analgesic ladder, which has been developed for cancer-related pain. Chronic pain can be treated with basic long-acting opioids and on-demand short-acting opioids. If patients show signs of neuropathic pain, administration of anticonvulsants, antidepressants or possibly ketamine should be considered.


Subject(s)
Anemia, Sickle Cell , Pain Management , Analgesics , Analgesics, Opioid/therapeutic use , Anemia, Sickle Cell/complications , Humans , Pain Measurement , Quality of Life
3.
J Med Chem ; 63(8): 3868-3880, 2020 04 23.
Article in English | MEDLINE | ID: mdl-31940200

ABSTRACT

Farnesoid X receptor (FXR) agonists are emerging as important potential therapeutics for the treatment of nonalcoholic steatohepatitis (NASH) patients, as they exert positive effects on multiple aspects of the disease. FXR agonists reduce lipid accumulation in the liver, hepatocellular inflammation, hepatic injury, and fibrosis. While there are currently no approved therapies for NASH, the bile acid-derived FXR agonist obeticholic acid (OCA; 6-ethyl chenodeoxycholic acid) has shown promise in clinical studies. Previously, we described the discovery of tropifexor (LJN452), the most potent non-bile acid FXR agonist currently in clinical investigation. Here, we report the discovery of a novel chemical series of non-bile acid FXR agonists based on a tricyclic dihydrochromenopyrazole core from which emerged nidufexor (LMB763), a compound with partial FXR agonistic activity in vitro and FXR-dependent gene modulation in vivo. Nidufexor has advanced to Phase 2 human clinical trials in patients with NASH and diabetic nephropathy.


Subject(s)
Benzothiazoles/therapeutic use , Chenodeoxycholic Acid/analogs & derivatives , Diet, High-Fat/adverse effects , Isoxazoles/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Benzothiazoles/chemistry , Chenodeoxycholic Acid/chemistry , Chenodeoxycholic Acid/therapeutic use , Dogs , Humans , Isoxazoles/chemistry , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/etiology , Protein Structure, Tertiary , Rats , Treatment Outcome
4.
Nat Rev Drug Discov ; 17(9): 688, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30116046

ABSTRACT

This corrects the article DOI: 10.1038/nrd.2018.97.

5.
Nat Rev Drug Discov ; 17(8): 588-606, 2018 08.
Article in English | MEDLINE | ID: mdl-30026524

ABSTRACT

Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1ß (IL-1ß) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.

6.
J Med Chem ; 60(24): 9960-9973, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29148806

ABSTRACT

The farnesoid X receptor (FXR) is a nuclear receptor that acts as a master regulator of bile acid metabolism and signaling. Activation of FXR inhibits bile acid synthesis and increases bile acid conjugation, transport, and excretion, thereby protecting the liver from the harmful effects of bile accumulation, leading to considerable interest in FXR as a therapeutic target for the treatment of cholestasis and nonalcoholic steatohepatitis. We identified a novel series of highly potent non-bile acid FXR agonists that introduce a bicyclic nortropine-substituted benzothiazole carboxylic acid moiety onto a trisubstituted isoxazole scaffold. Herein, we report the discovery of 1 (tropifexor, LJN452), a novel and highly potent agonist of FXR. Potent in vivo activity was demonstrated in rodent PD models by measuring the induction of FXR target genes in various tissues. Tropifexor has advanced into phase 2 human clinical trials in patients with NASH and PBC.


Subject(s)
Benzothiazoles/pharmacology , Cholestasis/drug therapy , Isoxazoles/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Receptors, Cytoplasmic and Nuclear/agonists , Administration, Oral , Animals , Benzothiazoles/therapeutic use , Biological Availability , Dogs , Drug Evaluation, Preclinical/methods , Fibroblast Growth Factors/genetics , Gene Expression Regulation/drug effects , Humans , Isoxazoles/therapeutic use , Male , Microsomes, Liver/drug effects , Piperidines/chemistry , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , Triglycerides/blood
7.
Ann Rheum Dis ; 76(4): 773-778, 2017 04.
Article in English | MEDLINE | ID: mdl-28153829

ABSTRACT

OBJECTIVES: Wnt signalling has been implicated in activating a fibrogenic programme in fibroblasts in systemic sclerosis (SSc). Porcupine is an O-acyltransferase required for secretion of Wnt proteins in mammals. Here, we aimed to evaluate the antifibrotic effects of pharmacological inhibition of porcupine in preclinical models of SSc. METHODS: The porcupine inhibitor GNF6231 was evaluated in the mouse models of bleomycin-induced skin fibrosis, in tight-skin-1 mice, in murine sclerodermatous chronic-graft-versus-host disease (cGvHD) and in fibrosis induced by a constitutively active transforming growth factor-ß-receptor I. RESULTS: Treatment with pharmacologically relevant and well-tolerated doses of GNF6231 inhibited the activation of Wnt signalling in fibrotic murine skin. GNF6231 ameliorated skin fibrosis in all four models. Treatment with GNF6231 also reduced pulmonary fibrosis associated with murine cGvHD. Most importantly, GNF6231 prevented progression of fibrosis and showed evidence of reversal of established fibrosis. CONCLUSIONS: These data suggest that targeting the Wnt pathway through inhibition of porcupine provides a potential therapeutic approach to fibrosis in SSc. This is of particular interest, as a close analogue of GNF6231 has already demonstrated robust pathway inhibition in humans and could be available for clinical trials.


Subject(s)
Aminopyridines/therapeutic use , Membrane Proteins/antagonists & inhibitors , Piperazines/therapeutic use , Scleroderma, Localized/prevention & control , Scleroderma, Systemic/prevention & control , Skin/pathology , Wnt Signaling Pathway/drug effects , Acyltransferases , Aminopyridines/pharmacology , Animals , Bleomycin , Disease Models, Animal , Disease Progression , Female , Fibrosis , Graft vs Host Disease/complications , Mice, Inbred BALB C , Piperazines/pharmacology , Protein Serine-Threonine Kinases/genetics , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/prevention & control , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Scleroderma, Localized/etiology , Scleroderma, Localized/metabolism , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Skin/metabolism , Transforming Growth Factor beta/metabolism
8.
ACS Med Chem Lett ; 7(7): 676-80, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437076

ABSTRACT

Blockade of aberrant Wnt signaling is an attractive therapeutic approach in multiple cancers. We developed and performed a cellular high-throughput screen for inhibitors of Wnt secretion and pathway activation. A lead structure (GNF-1331) was identified from the screen. Further studies identified the molecular target of GNF-1331 as Porcupine, a membrane bound O-acyl transferase. Structure-activity relationship studies led to the discovery of a novel series of potent and selective Porcupine inhibitors. Compound 19, GNF-6231, demonstrated excellent pathway inhibition and induced robust antitumor efficacy in a mouse MMTV-WNT1 xenograft tumor model.

9.
Nat Commun ; 6: 8372, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26496802

ABSTRACT

Insufficient pancreatic ß-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from ß-cells in diabetic patients, no pharmacological agents have been described that increase ß-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust ß-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces ß-cell proliferation, increases ß-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore ß-cell mass, and highlights a tractable pathway for future drug discovery efforts.


Subject(s)
Cell Proliferation , Glycogen Synthase Kinase 3/genetics , Insulin-Secreting Cells/cytology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Cell Division/drug effects , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Down-Regulation/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/enzymology , Male , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Pyridazines/pharmacology , Dyrk Kinases
10.
PLoS One ; 10(6): e0131071, 2015.
Article in English | MEDLINE | ID: mdl-26121493

ABSTRACT

Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease.


Subject(s)
Autoimmune Diseases/enzymology , Autoimmune Diseases/therapy , CD4-Positive T-Lymphocytes/metabolism , Calcium Signaling , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autoimmune Diseases/pathology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inositol Phosphates/metabolism , Jurkat Cells , Mice, Inbred C57BL , Mice, Knockout , ORAI1 Protein , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Kinase Inhibitors/pharmacology , Rats, Inbred Lew
11.
ACS Med Chem Lett ; 6(5): 562-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005534

ABSTRACT

Deregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization. Structure guided drug design led to the identification of (R)-2-phenylpyrrolidine substituted imidazopyridazines as a series of potent, selective, orally bioavailable pan-TRK inhibitors achieving tumor regression in rats bearing KM12 xenografts. From this work the (R)-2-phenylpyrrolidine has emerged as an ideal moiety to incorporate in bicyclic TRK inhibitors by virtue of its shape complementarity to the hydrophobic pocket of TRKs.

12.
Bioorg Med Chem Lett ; 24(23): 5478-83, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25455488

ABSTRACT

Systematic SAR optimization of the GPR119 agonist lead 1, derived from an internal HTS campaign, led to compound 29. Compound 29 displays significantly improved in vitro activity and oral exposure, leading to GLP1 elevation in acutely dosed mice and reduced glucose excursion in an OGTT study in rats at doses ⩾10 mg/kg.


Subject(s)
Pyrimidines/chemical synthesis , Receptors, G-Protein-Coupled/drug effects , Animals , Drug Discovery , Mice , Molecular Structure , Rats , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 24(10): 2383-7, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24751443

ABSTRACT

Screening hit 5 was identified in a biochemical screen for GPR119 agonists. Compound 5 was structurally novel, displayed modest biochemical activity and no oral exposure, but was structurally distinct from typical GPR119 agonist scaffolds. Systematic optimization led to compound 36 with significantly improved in vitro activity and oral exposure, to elevate GLP1 acutely in an in vivo mouse model at a dose of 10mg/kg.


Subject(s)
Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Mice, Inbred C57BL , Pyrazoles/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship
14.
J Med Chem ; 57(8): 3263-82, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24666203

ABSTRACT

Activation of the G-protein coupled receptor (GPCR) Takeda G-protein receptor 5 (TGR5), also known as G-protein bile acid receptor 1 (GPBAR1), has been shown to play a key role in pathways associated with diabetes, metabolic syndrome, and autoimmune disease. Nipecotamide 5 was identified as an attractive starting point after a high-throughput screen (HTS) for receptor agonists. A comprehensive hit-to-lead effort culminated in the discovery of 45h as a potent, selective, and bioavailable TGR5 agonist to test in preclinical metabolic disease models. In genetically obese mice (ob/ob), 45h was as effective as a dipeptidyl peptidase-4 (DPP-4) inhibitor at reducing peak glucose levels in an acute oral glucose tolerance test (OGTT), but this effect was lost upon chronic dosing.


Subject(s)
Hypoglycemic Agents/chemical synthesis , Piperazines/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Administration, Oral , Animals , Biological Availability , Drug Discovery , Glucagon-Like Peptide 1/analysis , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Piperazines/pharmacology , Structure-Activity Relationship
15.
Ophthalmologe ; 111(1): 23-30, 2014 Jan.
Article in German | MEDLINE | ID: mdl-24448812

ABSTRACT

BACKGROUND: Sudden pain-free impairment of vision often occurs due to acute occlusions of retinal blood vessels. Retinal vascular occlusion can be distinguished into the more frequent venous and to a lesser degree arterial events but mixed pictures also occur. OBJECTIVES: Summary of the current literature regarding interdisciplinary diagnosis and therapy of retinal blood vessel occlusions. MATERIALS AND METHODS: Selective literature review considering clinically relevant cardiovascular and hemostaseological aspects. RESULTS: The anatomical localization of the occlusion by the ophthalmologist can give important indications for further medical diagnostic and therapeutic decisions. Arterial occlusions are mostly caused by thromboembolisms and the source should be identified and treated. Venous occlusions are mostly due to local processes with a prothrombotic background or venous stasis associated with arterial hypertension. Prognostically, the localization, extent and duration of retinal ischemia are decisive factors. CONCLUSIONS: Vascular ocular occlusions are frequently secondary to internal disorders and therefore pose an interdisciplinary challenge.


Subject(s)
Patient Care Team , Retinal Vein Occlusion/diagnosis , Retinal Vein Occlusion/therapy , Thromboembolism/diagnosis , Thromboembolism/therapy , Vision Disorders/prevention & control , Cardiology/trends , Hematology/trends , Humans , Ophthalmology/trends , Retinal Vein Occlusion/complications , Thromboembolism/complications , Vision Disorders/diagnosis , Vision Disorders/etiology
16.
Clin Genet ; 86(6): 545-51, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24344637

ABSTRACT

The purpose of this study was to assess the frequency, severity, and clinical associations of dural ectasia (DE) in Loeys-Dietz syndrome (LDS). Database analysis of three German metropolitan regions identified 30 patients with LDS and TGFBR1 mutation in 6 and a TGFBR2 mutation in 24 individuals (17 men; mean age: 31 ± 19 years), as well as 60 age and sex-matched control patients with Marfan syndrome carrying a FBN1 mutation. DE was present in 22 patients with LDS (73%), and it related to skeletal score points (p = 0.008), non-skeletal score points (p < 0.001), and to the presence of ≥7 systemic score points (p = 0.010). Similarly, the severity of DE was related to body height (p = 0.010) and non-skeletal score points (p = 0.004). Frequency (p = 0.131) and severity of DE (p = 0.567) was similar in LDS and Marfan syndrome. DE is a manifestation of LDS that occurs with similar frequency and severity as in Marfan syndrome. Severity of DE may serve as a marker of the overall connective tissue disease severity. LDS may be considered in patients with DE.


Subject(s)
Dilatation, Pathologic/genetics , Loeys-Dietz Syndrome/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , Adolescent , Adult , Aged , Body Height , Case-Control Studies , Child , Child, Preschool , Female , Humans , Loeys-Dietz Syndrome/physiopathology , Magnetic Resonance Imaging , Male , Marfan Syndrome/genetics , Marfan Syndrome/physiopathology , Middle Aged , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Young Adult
17.
Proc Natl Acad Sci U S A ; 110(50): 20224-9, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24277854

ABSTRACT

Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2. LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV-Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wnt-driven cancers through the inhibition of PORCN.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Pyrazines/pharmacology , Pyridines/pharmacology , Wnt Signaling Pathway/drug effects , Acyltransferases , Animals , Axin Protein/antagonists & inhibitors , Blotting, Western , Cell Line, Tumor , Cloning, Molecular , High-Throughput Screening Assays , Humans , Mice , Mutagenesis , Phosphorylation/drug effects , Pyrazines/therapeutic use , Pyridines/therapeutic use , Radioligand Assay , Rats , Receptors, Notch/genetics , Reverse Transcriptase Polymerase Chain Reaction
18.
Pol J Vet Sci ; 16(2): 211-8, 2013.
Article in English | MEDLINE | ID: mdl-23971187

ABSTRACT

In this study we examined the serum activity of lactate dehydrogenase (LDH) and its isoenzyme patterns in 28 calves of a lowland black spotted breed and its crossbreeds at the age of 2-6 months suffering from clinically noticeable manifested respiratory diseases--bronchopneumonia (BRD Group). As a control group we used 35 clinically healthy calves of the same age, breed and nutrition (Healthy Group). The sick calves did not show clinical signs or pathological lesions on other organ systems. The results found in sick calves showed a significantly higher total activity of LDH than in clinically healthy animals (P < 0.01). The mean activity of LDH was 2012 U/I in healthy calves and in calves with respiratory diseases 2529 U/1. The differences in all LDH isoenzyme patterns between both groups of animals were significant (P < 0.001) and in calves with respiratory diseases are characterized by a marked increase of the LDH 1 fraction and a decrease in the proportion of the other four LDH isoenzymes. Our results differ from those observed and presented in respiratory diseases in human medicine or in sheep. The explanation for the obtained results in calves and the determination of their diagnostic significance needs further studies and investigations using more animals with various severity of clinical signs and pathological changes, including analysis and determination of lactate dehydrogenase isoenzyme patterns in healthy and affected cattle lung tissue.


Subject(s)
Bronchopneumonia/veterinary , Cattle Diseases/enzymology , Gene Expression Regulation, Enzymologic/physiology , L-Lactate Dehydrogenase/blood , Animals , Bronchopneumonia/blood , Bronchopneumonia/metabolism , Cattle , Cattle Diseases/blood , Cattle Diseases/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism
19.
J Med Chem ; 56(14): 5675-90, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23742252

ABSTRACT

The synthesis, preclinical profile, and in vivo efficacy in rat xenograft models of the novel and selective anaplastic lymphoma kinase inhibitor 15b (LDK378) are described. In this initial report, preliminary structure-activity relationships (SARs) are described as well as the rational design strategy employed to overcome the development deficiencies of the first generation ALK inhibitor 4 (TAE684). Compound 15b is currently in phase 1 and phase 2 clinical trials with substantial antitumor activity being observed in ALK-positive cancer patients.


Subject(s)
Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Sulfones/chemical synthesis , Anaplastic Lymphoma Kinase , Animals , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Dogs , Humans , Macaca fascicularis , Male , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Rats , Structure-Activity Relationship , Sulfones/pharmacokinetics , Sulfones/therapeutic use , Xenograft Model Antitumor Assays
20.
ACS Med Chem Lett ; 3(2): 140-5, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-24900443

ABSTRACT

Neurotrophins and their receptors (TRKs) play key roles in the development of the nervous system and the maintenance of the neural network. Accumulating evidence points to their role in malignant transformations, chemotaxis, metastasis, and survival signaling and may contribute to the pathogenesis of a variety of tumors of both neural and non-neural origin. By screening the GNF kinase collection, a series of novel oxindole inhibitors of TRKs were identified. Optimization led to the identification of GNF-5837 (22), a potent, selective, and orally bioavailable pan-TRK inhibitor that inhibited tumor growth in a mouse xenograft model derived from RIE cells expressing both TRKA and NGF. The properties of 22 make it a good tool for the elucidation of TRK biology in cancer and other nononcology indications.

SELECTION OF CITATIONS
SEARCH DETAIL
...