Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Adv Colloid Interface Sci ; 328: 103178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735101

ABSTRACT

Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.

2.
Int J Biol Macromol ; 266(Pt 2): 131080, 2024 May.
Article in English | MEDLINE | ID: mdl-38537850

ABSTRACT

Despite the tremendous efforts on developing antibacterial wearable textile materials containing Ti3C2Tx MXene, the singular antimicrobial mechanism, poor antibacterial durability, and oxidation susceptibility of MXene limits their applications. In this context, flexible multifunctional cellulosic textiles were prepared via layer-by-layer assembly of MXene and the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8). Specifically, the introduction of highly conductive MXene enhanced the interface interactions between the ZIF-8 layer and cellulose fibers, endowing the green-based materials with outstanding synergistic photothermal/photodynamic therapy (PTT/PDT) activity and adjustable electromagnetic interference (EMI) shielding performance. In-situ polymerization formed a MXene/ZIF-8 bilayer structure, promoting the generation of reactive oxygen species (ROS) while protecting MXene from oxidation. The as-prepared smart textile exhibited excellent bactericidal efficacy of >99.99 % against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 5 min of NIR (300 mW cm-2) irradiation which is below the maximum permissible exposure (MPE) limit. The sustained released Zn2+ from the ZIF-8 layer achieved a bactericidal efficiency of over 99.99 % within 48 h without NIR light. Furthermore, this smart textile also demonstrated remarkable EMI shielding efficiency (47.7 dB). Clearly, this study provides an elaborate strategy for designing and constructing multifunctional cellulose-based materials for a variety of applications.


Subject(s)
Anti-Bacterial Agents , Cellulose , Escherichia coli , Imidazoles , Metal-Organic Frameworks , Staphylococcus aureus , Textiles , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Escherichia coli/drug effects , Zeolites/chemistry , Zeolites/pharmacology , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Photochemotherapy/methods
3.
Langmuir ; 40(10): 5195-5204, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38418460

ABSTRACT

This paper presents the fabrication of novel Cu3Fe4V6O24 nanoparticles (NPs) via a facile sol-gel method as efficient nanocatalysts (NCs) to produce azide-alkyne 1,3-dipolar cycloaddition compounds. The effect of the calcination time on the formation of NPs was investigated. The as-prepared NPs were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET) analyses. Cu3Fe4V6O24 NCs were applied to azide-alkyne 1,3-dipolar cycloaddition reactions. The effect of the catalyst loading, temperature, and time of reaction was optimized to improve the efficiency of the NC function by the response surface methodology-central composite design (RSM-CCD) method. In optimal conditions, the yield of the reaction was 96%. In addition, the effect of different solvents on the yield of the reaction was investigated. Moreover, Cu3Fe4V6O24 NPs efficiently catalyze different 1,2,3-triazoles in excellent yields.

4.
Nanoscale Adv ; 6(3): 960-972, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298582

ABSTRACT

The broad use of propargyl amines and tetrazoles in pharmaceutical applications presents a well-established challenge. Their synthesis relies heavily on catalysis, which, in turn, has been hindered by the scarcity of stable and practical catalysts. In response to this issue, we have developed an environmentally friendly and sustainable catalyst by infusing copper hydroxide into basil seed hydrogel (Cu(OH)2-BSH), creating a 3D nanoreactor support structure. To verify the structural, physical, chemical, and morphological properties of the prepared samples, a comprehensive analysis using various techniques, including FT-IR, EDX, FE-SEM, TEM, XRD, BET, TGA, and XPS, were conducted. The results not only confirmed the presence of Cu(OH)2 but also revealed a porous structure, facilitating faster diffusion and providing a substantial number of active sites. This catalyst boasts a high surface area and can be easily recovered, making it a cost-effective, safe, and readily available option. This catalyst was applied to the synthesis of propargyl amines and tetrazoles through multi-component reactions (MCRs), achieving excellent results under mild conditions and in a remarkably short timeframe. Consequently, this work offers a straightforward and practical approach for designing and synthesizing metal hydroxides and 3D hydrogels for use in heterogeneous catalysis during organic syntheses. This can be achieved using basic and affordable starting materials at the molecular level.

5.
ACS Nano ; 18(5): 4329-4342, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38261787

ABSTRACT

Lignin, as an abundant aromatic biopolymer in plants, has great potential for medical applications due to its active sites, antioxidant activity, low biotoxicity, and good biocompatibility. In this work, a simple and ecofriendly approach for lignin fractionation and modification was developed to improve the antitumor activity of lignin. The lignin fraction KL-3 obtained by the lignin gradient acid precipitation at pH = 9-13 showed good cytotoxicity. Furthermore, the cell-feeding lignin after additional structural modifications such as demethylation (DKL-3), sulfonation (SL-3), and demethylsulfonation (DSKL-3) could exhibit higher glutathione responsiveness in the tumor microenvironment, resulting in reactive oxygen species accumulation and mitochondrial damage and eventually leading to apoptosis in HepG2 cells with minimal damage to normal cells. The IC50 values for KL-3, SL-3, and DSKL-3 were 0.71, 0.57, and 0.41 mg/mL, respectively, which were superior to those of other biomass extractives or unmodified lignin. Importantly, in vivo experiments conducted in nude mouse models demonstrated good biosafety and effective tumor destruction. This work provides a promising example of constructing carrier-free functionalized lignin antitumor materials with different structures for inhibiting the growth of human hepatocellular carcinoma (HepG2) cells, which is expected to improve cancer therapy outcomes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Polyurethanes , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Hep G2 Cells , Lignin/pharmacology , Tumor Microenvironment
6.
Int J Biol Macromol ; 257(Pt 1): 128648, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061518

ABSTRACT

Interfacing cellulose nanocrystals (CNCs) with fluorescent materials provides more possibilities for constructing of sensory/imaging platforms in biomedical applications. In this work, by harnessing the efficient extraction accompanied modification of CNCs and adjustable optical properties of carbon dots (CDs), we report the constructions and emission wavelength tuning of fluorescent CNCs (F-CNCs) composed of CNC nano-scaffolds and CDs. The as-prepared CNCs are densely decorated with citric acid (CA), which plays the role of carbon source for the in-situ synthesis of CDs on CNCs. For the F-CNCs carrying blue, green, and red emissive CDs, ethylenediamine (EDA), urea, and thiourea are the N or N/S sources. Fingerprints of chemical groups, morphological characters, and redox activities are resolved to elaborate the optical mechanisms of CDs with varying emission colors. The emission wavelength is adjusted by either changing the particle size or introducing new emission centers. Both are primarily achieved via precursor engineering. The F-CNCs reveal quantum yields (QYs) >22 % and negligible fluorescence quenching (< 6 %) upon continuous excitation as long as 24 h. Benefited from their cell membrane penetration capability, the F-CNCs with different emission wavelengths were challenged for multiplexed cytoplasm imaging.


Subject(s)
Nanoparticles , Quantum Dots , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Carbon/chemistry
7.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37947715

ABSTRACT

Tuning the optical properties of carbon dots (CDs) and figuring out the mechanisms underneath the emissive phenomena have been one of the most cutting-edge topics in the development of carbon-based nanomaterials. Dual-emissive CDs possess the intrinsic dual-emission character upon single-wavelength excitation, which significantly benefits their multi-purpose applications. Explosive exploitations of dual-emissive CDs have been reported during the past five years. Nevertheless, there is a lack of a systematic summary of the rising star nanomaterial. In this review, we summarize the synthesis strategies and optical mechanisms of the dual-emissive CDs. The applications in the areas of biosensing, bioimaging, as well as photoelectronic devices are also outlined. The last section presents the main challenges and perspectives in further promoting the development of dual-emissive CDs. By covering the most vital publications, we anticipate that the review is of referential significance for researchers in the synthesis, characterization, and application of dual-emissive CDs.

8.
J Agric Food Chem ; 71(44): 16469-16487, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37877425

ABSTRACT

The packaging of food plays a crucial role in food preservation worldwide. However, traditional packaging systems are passive layers with weak efficiency in protecting the food quality. Therefore, packaged foods are gradually spoiled due to the oxidation and growth of microorganisms. Additionally, most of the commercial packaging films are made of petroleum-based materials which raise environmental concerns. Accordingly, the development of eco-friendly natural-derived active packaging systems has increased the attention of scientists. Cellulose as the most abundant polysaccharide on earth with high biocompatibility, no toxicity, and high biodegradability has extensively been applied for the fabrication of packaging films. However, neat cellulose-based films lack antioxidant and antimicrobial activities. Therefore, neat cellulose-based films are passive films with weak food preservation performance. Active films have been developed by incorporating antioxidants and antimicrobial agents into the films. In this review, we have explored the latest research on the fabrication of antimicrobial/antioxidant cellulose-based active packaging films by incorporating natural extracts, natural polyphenols, nanoparticles, and microparticles into the cellulose-based film formulations. We categorized these types of packaging films into two main groups: (i) blend films which are obtained by mixing solutions of cellulose with other soluble antimicrobial/antioxidant agents such as natural extracts and polyphenols; and (ii) composite films which are fabricated by dispersing antimicrobial/antioxidant nano- or microfillers into the cellulose solution. The effect of these additives on the antioxidant and antimicrobial properties of the films has been explained. Additionally, the changes in the other properties of the films such as hydrophilicity, water evaporation rate, and mechanical properties have also been briefly addressed.


Subject(s)
Anti-Infective Agents , Cellulose , Food Packaging , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Polysaccharides
9.
Int J Biol Macromol ; 253(Pt 1): 126642, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37657575

ABSTRACT

Carbohydrate used in biomedical applications is influenced by numerous factors. One of the most appealing characteristic of carbohydrates is their ability to reproduce from natural resources which makes them ecologically friendly. Due to their abundance, biocompatibility, and no contamination by residual initiators, the desire for polysaccharides in medical uses is growing. Research on fiber-based materials, with a variety of medical applications including bio-functional scaffolds, continues to yield novel and intriguing findings. Almost all biopolymers of diverse structural compositions are electrospun to fulfill biomedical usage criteria, and the electrospinning technique is widely employed in biomedical technologies for both in-vivo and in-vitro therapies. Due to its biocompatibility and biodegradability, polycaprolactone (PCL) is employed in medical applications like tissue engineering and drug delivery. Although PCL nanofibers have established effects in vitro, more research is needed before their potential therapeutic application in the clinic. Here we tried to focus mainly on the carbohydrate incorporated PCL-based nanofibers production techniques, structures, morphology, and physicochemical properties along with their usage in biomedicine.


Subject(s)
Nanofibers , Polymers , Tissue Scaffolds/chemistry , Polyesters/chemistry , Tissue Engineering/methods , Polysaccharides , Nanofibers/chemistry
10.
Adv Colloid Interface Sci ; 318: 102953, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37399637

ABSTRACT

Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.


Subject(s)
Nanoparticles , Polysaccharides , Humans
11.
Bioeng Transl Med ; 8(4): e10503, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476065

ABSTRACT

3D printing is a state-of-the-art technology for the fabrication of biomaterials with myriad applications in translational medicine. After stimuli-responsive properties were introduced to 3D printing (known as 4D printing), intelligent biomaterials with shape configuration time-dependent character have been developed. Polysaccharides are biodegradable polymers sensitive to several physical, chemical, and biological stimuli, suited for 3D and 4D printing. On the other hand, engineering of mechanical strength and printability of polysaccharide-based scaffolds along with their aneural, avascular, and poor metabolic characteristics need to be optimized varying printing parameters. Multiple disciplines such as biomedicine, chemistry, materials, and computer sciences should be integrated to achieve multipurpose printable biomaterials. In this work, 3D and 4D printing technologies are briefly compared, summarizing the literature on biomaterials engineering though printing techniques, and highlighting different challenges associated with 3D/4D printing, as well as the role of polysaccharides in the technological shift from 3D to 4D printing for translational medicine.

12.
Carbohydr Polym ; 316: 121075, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321751

ABSTRACT

Aqueous zinc-ion batteries (AZIBs), with the merits of high safety, environmental friendliness, abundant resources, and competitive energy density are recognized as a promising secondary battery technology and are anticipated to be a great alternative to organic lithium-ion batteries (LIBs). However, the commercial application of AZIBs is severely hindered by intractable issues, including high desolvation barrier, sluggish ion transport kinetics, growth of zinc dendrite, and side reactions. Nowadays, cellulosic materials are frequently employed in the fabrication of advanced AZIBs, because of the intrinsically excellent hydrophilicity, strong mechanical strength, sufficient active groups, and unexhaustible production. In this paper, we start from reviewing the success and dilemma of organic LIBs, followed by introducing the next-generation power source of AZIBs. After summarizing the features of cellulose with great potential in advanced AZIBs, we comprehensively and logically analyze the applications and superiorities of cellulosic materials in AZIBs electrodes, separators, electrolytes, and binders with an in-depth perspective. Finally, a clear outlook is delivered for future development of cellulose in AZIBs. Hopefully, this review can offer a smooth avenue for future direction of AZIBs by means of cellulosic material design and structure optimization.


Subject(s)
Cellulose , Zinc , Ions , Electric Power Supplies , Electrodes , Lithium
13.
Int J Pharm ; 643: 123148, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37336297

ABSTRACT

This study aimed to develop a novel radiosensitizer consisting of platinum nanoparticles (Pt NPs) as a high-atomic-number element in order to maximize the generation of ROS under ionizing radiation at the tumor site. Pt NPs were produced via a green and facile method in the presence of gelatin (Gel) as both reducing and stabilizing agent. After determining the physical structure and chemical composition of Pt@Gel NPs by STEM, FeSEM, EDS, DLS, XRD and FTIR, in vitro cytotoxicity on human umbilical vein endothelial cells (HUVEC) and breast cancer cell line (4T1) was evaluated by MTT assay. Finally, ROS generation assay, calcein AM/PI staining assay and clonogenic test were performed on 4T1 cells under X-Ray irradiation to evaluate the radioenhancment efficiency of Pt@Gel. The prepared NPs exhibited spherical and uniform shapes and narrowly distributed sizes in addition to an acceptable radiosensitization capability. The nanosystem provided higher levels of intracellular ROS in malignant cells and enhanced cancer cell death rate under X-Ray irradiation. Overall, the findings suggested that Pt@Gel could be a safe and effective alternative to existing radiosensitizers and potentially be employed for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Nanoparticles , Radiation-Sensitizing Agents , Humans , Female , Metal Nanoparticles/chemistry , Gelatin , X-Rays , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Platinum/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology
14.
RSC Adv ; 13(19): 12760-12780, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37153517

ABSTRACT

Foodborne diseases have arisen due to the globalization of industry and the increase in urban population, which has led to increased demand for food and has ultimately endangered the quality of food. Foodborne diseases have caused some of the most common public health problems and led to significant social and economic issues worldwide. Food quality and safety are affected by microbial contaminants, growth-promoting feed additives (ß-agonists and antibiotics), food allergens, and toxins in different stages from harvesting to storage and marketing of products. Electrochemical biosensors, due to their reduced size and portability, low cost, and low consumption of reagents and samples, can quickly provide valuable quantitative and qualitative information about food contamination. In this regard, using nanomaterials can increase the sensitivity of the assessment. Magnetic nanoparticle (MNP)-based biosensors, especially, are receiving significant attention due to their low-cost production, physicochemical stability, biocompatibility, and eco-friendly catalytic characteristics, along with magnetic, biological, chemical and electronic sensing features. Here, we provide a review on the application of iron-based magnetic nanoparticles in the electrochemical sensing of food contamination. The types of nanomaterials used in order to improve the methods and increase the sensitivity of the methods have been discussed. Then, we stated the advantages and limitations of each method and tried to state the research gaps for each platform/method. Finally, the role of microfluidic and smartphone-based methods in the rapid detection of food contamination is stated. Then, various techniques like label-free and labelled regimes for the sensitive monitoring of food contamination were surveyed. Next, the critical role of antibody, aptamer, peptide, enzyme, DNA, cells and so on for the construction of specific bioreceptors for individual and simultaneous recognition by electrochemical methods for food contamination were discussed. Finally, integration of novel technologies such as microfluidic and smartphones for the identification of food contaminations were investigated. It is important to point out that, in the last part of each sub-section, attained results of different reports for each strategy were compared and advantages/limitations were mentioned.

15.
Food Chem ; 424: 136415, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37257279

ABSTRACT

Ethylene, released from fruits and vegetables (F&V) after harvest and during storage, often accelerates the ripening or over-ripening and may be caused decay, leading to substantial economic loss. Dendritic mesoporous silica supported (DMS) platinum (Pt/DMS) catalyst as ethylene scavenger was prepared and various characterization results indicated that the as-prepared Pt/DMS with ultra-low Pt loading exhibited excellent ethylene scavenging performance, which could maintain the complete ethylene conversion (100%) over 50 h at 25 °C and even 0 °C for 100 min with superior consecutive cycles by repeating the use of Pt/DMS. The presence of Pt/DMS delayed banana softening, and browning, reduced weight loss and kept the freshness for 14 days. In conclusion, the active packaging incorporated with Pt/DMS catalysts with high ethylene scavenging efficiency is expected to be extremely beneficial to the post-harvest storage life of other fruits and vegetables that needs further related investigation.


Subject(s)
Musa , Platinum , Silicon Dioxide , Ethylenes , Vegetables
16.
Int J Biol Macromol ; 234: 123636, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36775221

ABSTRACT

A wide range of high-Z nanomaterials are fabricated to decrease radiation dose by sensitizing cells to irradiation through various mechanisms such as ROS generation enhancement. Alginate-coated silver sulfide nanoparticles (Ag2S@Alg) were synthesized and characterized by SEM, TEM, DLS, XRD, EPS, FT-IR, and UV-vis analysis techniques. Cytotoxicity of nanoparticles was tested against HFF-2, MCF-7, and 4 T1 cell lines for biocompatibility and radio enhancement ability evaluation, respectively. Moreover, the hemolysis assay demonstrated that the nanoparticles were biocompatible and nontoxic. In vitro intracellular ROS generation and calcein AM/PI co-staining unveiled cancerous cell death induction by nanoradiosensitizer, Ag2S@Alg. Further, histopathology results emphasized the tumor ablation capability of Ag2S@Alg. Silver anticancer properties were also recognized and combined with its radiosensitizing effect under X-ray irradiation.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Humans , Female , Alginates , Breast Neoplasms/radiotherapy , Breast Neoplasms/pathology , X-Rays , Spectroscopy, Fourier Transform Infrared , Reactive Oxygen Species , Metal Nanoparticles/therapeutic use
17.
RSC Adv ; 13(9): 6225-6238, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36825283

ABSTRACT

Acetaldehyde acts as an important mediator in the metabolism of plants and animals; however, its abnormal level can cause problems in biological processes. Although acetaldehyde is found naturally in many organisms, exposure to high concentrations can have effects on the eyes, respiratory system, etc. Due to the importance of detecting acetaldehyde in environmental samples and biofluids, determination of its concentration is highly demanded. There are some reports showing exposure to high concentrations of acetaldehyde for a long time can increase the risk of cancer by reacting with DNA. In this work, we presented a novel colorimetric method for rapid and sensitive detection of acetaldehyde with high reproducibility using different AgNPs with various morphologies. The redox reaction between AgNPs, 3,3',5,5'-tetramethylbenzidine (TMB) solution, and analytes endows a color change in 15 minutes that is detectable by the naked eye. UV spectrophotometry was further used for quantitative analysis. An iron mold with a hexagonal pattern and liquid paraffin were also used to prepare the paper-based microfluidic substrate, as a low cost, accessible, and rapid detection tool. Different types of AgNPs showed different lower limits of quantification (LLOQ). The AgNPs-Cit and AgNPrs could identify acetaldehyde with linear range of 10-7 to 10 M and an LLOQ of 10-7 M. The AgNWs showed the best color change activity with a linear range 10-5 to 10 M and the lowest diagnostic limit is 10-5 M. Finally, analysis of human biofluids as real samples were successfully performed using this system.

18.
Int J Biol Macromol ; 235: 123701, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36801277

ABSTRACT

An effective way of improving the efficiency of agrochemicals and improving crop yield and quality is by slow or sustained release, which is conducive to environmental protection. Meanwhile, the excessive amount of heavy metal ions in soil can create toxicity in plants. Here, we prepared lignin-based dual-functional hydrogels containing conjugated agrochemical and heavy metal ligands through free-radical copolymerization. The content of the agrochemicals (including plant growth regulator 3-indoleacetic acid (IAC) and herbicide 2,4-dichlorophenoxyacetic acid (DCP)) in the hydrogels were tuned by changing the hydrogel composition. The conjugated agrochemicals could slowly release through the gradual cleavage of the ester bond. As a result of the release of the DCP herbicide, the growth of lettuce was effectively regulated, thus confirming the feasibility and effectiveness of this system in application. At the same time, due to the presence of metal chelating groups (such as COOH, phenolic OH, and tertiary amine) the hydrogels could act as adsorbents or stabilizers towards heavy metal ions for improving the soil remediation and preventing the adsorption of these toxic metals by plant roots. Specifically, Cu(II) and Pb(II) could be adsorbed >380 and 60 mg/g, respectively.


Subject(s)
Lignin , Metals, Heavy , Lignin/chemistry , Hydrogels , Agrochemicals/chemistry , Delayed-Action Preparations , Metals, Heavy/chemistry , Ions , Soil , Adsorption
19.
Carbohydr Polym ; 305: 120556, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36737202

ABSTRACT

Hydrogel with 3D networks have shown great potential for ion transportation and energy conversion. However, the micron size pores of hydrogel greatly limit the ion selectivity and energy conversion performance. Here, we report a bacterial cellulose (BC) derived hydrogel membrane with double-network (DN) and tailored ion transport channels by rationally filling acrylic acid (AAc)-co-acrylamide (AAm)-co-methyl methacrylate (MMA) polymers into BC hydrogel micropores. Fabricated AAM/BC DN hydrogel membrane displays a unique hierarchical interconnected porous structure and 3D cation transport channels. From the results, the maximum power density reached up to 7.63 W·m-2 at 50-fold salinity gradient under alkaline conditions (pH 11). Interestingly, the power density of 45.5 W·m-2 was achieved through acid-base neutralization reaction. Furthermore, hydrogel successfully obtained a power density of 28.4 W·m-2 from a mixed system of paper black liquor wastewater/seawater. The results of this investigation suggested the enormous potential of BC-based nanofluidic membrane in sustainable osmotic energy conversion.


Subject(s)
Cellulose , Hydrogels , Osmosis , Polymers , Acrylamide
20.
J Environ Manage ; 332: 117377, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36739771

ABSTRACT

The emergence of new diseases and the unplanned industrialization of cities have led to new diseases and the subsequent use of antibiotics. Hence the remediation of wastewater containing antibiotics and their severe pollution has raised serious concerns in recent years. Herein coral-shaped α-Fe2O3/ZnO/reduced graphene oxide (r-GO)-like carbon heterojunction in-situ were prepared from basil seed as a sustainable biomass resource and applied for the photodegradation of the oxytetracycline (OTC) as a typical antibiotic in a helical plug flow photoreactor (HPFPR) via persulfate activation under visible light irradiation. Spectroscopy and electrochemical results confirmed the tunable band structure and quick light absorption, superior charge separation and transfer, satisfactory charge carrier lifetime, and long-term stability for the prepared photocatalyst. The 98% degradation efficiency was achieved for OTC within 90 min fitted by a first-order kinetic model with the rate constant of 0.1248 min-1. The finding proves that HPFPR exhibited a higher degradation rate of OTC by 2.3 times compared to the batch reactor. The 3D computational fluid dynamics (CFD) model confirmed the outstanding performance of the HPFPR. Scavenging experiments integrated with mott Schottky and DRS results revealed that rGO intensifies the S-scheme charge carrier transfer and built-in electric field and reduces the recombination. Finally, this work has substantial potential for the in-situ synthesis of environmental-friendly and large-scale metal oxide heterojunctions in natural carbon supports as well as scale-up and gives novel insights from molecular and engineering points of view into the wastewater remediation processes and clean water production.


Subject(s)
Graphite , Oxytetracycline , Zinc Oxide , Zinc Oxide/chemistry , Graphite/chemistry , Wastewater , Biomass , Oxides/chemistry , Anti-Bacterial Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...