Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemosphere ; 240: 124850, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31561163

ABSTRACT

The present study deals with interaction of two air pollutants: dibenzodioxin, DD, and its' monochlorinated derivative, 2-chlorodibenzodioxin, 2CLDD, with models of the lung surfactant (LS) system. A monolayer composed of DPPC and POPC in 1:1 molar ratio was used as a model of LS. One component monolayers of DPPC and POPC were also examined, to model the interiors of LC and LE domains in LS, respectively. Molecular dynamics simulations and measurements of surface pressure isotherms, as well as polarization modulation-infrared reflection-absorption spectra were employed to study the influence of dioxins on the monolayers. We demonstrate, that both dioxins adsorb and accumulate in the hydrophobic parts of all three monolayers. DD molecules prefer flat orientation on the surface at large areas. Upon compression, they lift and orient perpendicularly to the monolayer. Flat orientation of DD molecules leads to their large surface area. In consequence they preferentially locate in vicinity of unsaturated chains of POPC - they are small enough to fill void spaces created by kinks in unsaturated chains. 2CLDD orient along monolayer normal already at the largest areas and preference for POPC was not observed for them. In laterally relaxed states, a condensing effect, connected with reduction of surface area available to the lipids was observed for both dioxins. In the case of 2CLDD, additional locally ordering influence of dioxin molecules was detected. In compressed states, the presence of dioxin molecules hinders alignment and uniform ordering of lipid chains.


Subject(s)
Dioxins/chemistry , Lung/pathology , Pulmonary Surfactants/therapeutic use , Pulmonary Surfactants/pharmacology
2.
IUCrJ ; 6(Pt 2): 226-237, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867920

ABSTRACT

Chromic materials are nowadays widely used in various technological applications, however understanding the effect and the possibility of tuning the obtained colour of a material are still challenging. Here a combined experimental and theoretical study is presented on the solvatochromic and crystallochromic effects in the (pseudo)polymorphs of tyraminium violurate. This organic material exhibits a large solvatochromic shift (ca 192 nm) associated with broad colour change (from yellow to dark violet). Tyraminum violurate crystallizes as red crystals of form (I) from water as a solvate, and as an unsolvated form [violet crystals of (II)] from methanol solution. Form (I), when heated, undergoes two crystal-to-crystal phase transformations associated with colour change of the crystals. Crystals of (II) show extreme birefringence (ca 0.46) and high refractive index (n γ above 1.90), which can be correlated with preferential orientation of the resultant dipole moments of the ions. Examination of optical effects (UV-Vis spectra) along with theoretical calculations (QTAIM, atomic and bond polarizabilities) enabled the description of the origin of colour in the studied materials.

3.
Chemistry ; 24(35): 8727-8731, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29733105

ABSTRACT

Technological innovation enforces a revolutionized approach towards materials chemistry. In this paper a new methodology towards crystal engineering of polar materials for possible applications in linear or non-linear optics (NLO), as well as ferroelectric, pyroelectric or piezoelectric crystals is presented. The necessity to fulfil several criteria concerning symmetry, electron properties of the building blocks, and also mechanical and optical stability was achieved by fusion of a pharmaceutical molecule and an NLO-phore. Co-crystals of 2-amino-5-nitropyridine barbital, presented in this manuscript, show cutting-edge optical performance. Large second harmonic generation (SHG) efficiency (40 times better than potassium dihydrogen phosphate, KDP), extreme birefringence (2.7 times higher than for calcite), simplicity in preparation, and optical and mechanical stability of the product proves that in fact a new generation of smart materials was obtained.

4.
J Phys Chem C Nanomater Interfaces ; 121(45): 25509-25519, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29170688

ABSTRACT

p-Nitroaniline presents the typical motif of a second-order nonlinear optically (NLO) active molecule. However, because of its crystallization in an antiparallel and hence centrosymmetric structure, the NLO activity is lost. In this contribution, the p-nitroaniline motif was built successfully into the MIL-53 metal-organic framework. More precisely, MIL-53 was synthesized with 2-amino-5-nitroterephthalate as organic linker, with Al3+, Ga3+, or In3+ as inorganic cation. The Al and Ga structures are polar, as confirmed by second-harmonic generation microscopy, yielding stable NLO materials. Indeed, they contain a 22-36% surplus of the dipolar 2-amino-5-nitro-terephthalate oriented in a parallel fashion. The indium compound was shown to be less crystalline and centrosymmetric. Ab initio modeling of the second-order NLO response shows that the Al and Ga materials show a response comparable to typical inorganic commercial NLO materials such as KDP. As a hybrid material, capable of low-temperature synthesis and processing and the ultrafast NLO responses associated with organic materials, this material can potentially provide an interesting venue for applications with respect to traditional inorganic NLO materials.

5.
Phys Chem Chem Phys ; 17(29): 19546-56, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26144533

ABSTRACT

The impact of atomic charge definition for describing the crystal polarizing electric field has been assessed in view of predicting the linear and nonlinear optical susceptibilities of molecular crystals. In this approach, the chromophores are embedded in the electric field of its own point charges, which are evaluated through a self-consistent procedure including charge scaling to account for the screening of the dielectric. Once the crystal field is determined, dressed molecular polarizabilities and hyperpolarizabilities are calculated and used as input of an electrostatic interaction scheme to evaluate the crystal linear and nonlinear optical responses. It is observed that many charge definitions (i) based on partitioning the electron density (QTAIM), (ii) obtained by analyzing the quantum-chemical wavefunction (Mulliken, MBS, and NBO), and (iii) derived by fitting to the electrostatic potential (MK, CHelpG, and HLYGAt) give very consistent results and are equally valid whereas Hirshfeld partitioning and CM5 charge parametrizations underestimate the refractive indices and second-order nonlinear optical susceptibilities. An alternative approach omitting charge scaling is demonstrated to overestimate the different crystal optical properties. On the other hand, the molecule embedding approach provides results in close agreement with those calculated with a charge field obtained from periodic boundary condition calculations.

7.
J Chem Phys ; 141(10): 104109, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25217906

ABSTRACT

The linear and second-order nonlinear optical susceptibilities of three ionic organic crystals, 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST), 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and 4-N,N-dimethylamino-4'-N'-phenyl-stilbazolium hexafluorophosphate (DAPSH), have been calculated by adopting a two-step multi-scale procedure, which consists in calculating: (i) the ion properties using ab initio or density functional theory methods and then (ii) in accounting for the crystal environment effects using classical electrostatic models. Provided that the ionic properties are evaluated at the second-order Møller-Plesset level and that the dressing field effects using point charges are accounted for, the agreement with experiment is excellent and enables to explain the origin of the larger χ((2)) response of DAPSH with respect to DAST and DSTMS. The study has also demonstrated that including the dressing field leads to a decrease of the χ((2)) response of ionic crystals whereas its effect is opposite for molecular crystals. Moreover, the results have also demonstrated that this multi-scale approach can be used to interpret the impact of the nature and position of the counterion on the linear and nonlinear optical susceptibilities of ionic crystals. Finally, it has been shown that the use of a conventional exchange-correlation functional like B3LYP leads to severe overestimations of χ((1)) but large underestimations of χ((2)) whereas the use of homogeneous dipole field is not recommended because it usually leads to overestimations of the linear and nonlinear optical susceptibilities.

8.
J Chem Theory Comput ; 10(5): 2114-24, 2014 May 13.
Article in English | MEDLINE | ID: mdl-26580538

ABSTRACT

The linear [χ((1))] and second-order nonlinear [χ((2))] optical susceptibilities of the 2-methyl-4-nitroaniline (MNA) crystal are calculated within the local field theory, which consists of first computing the molecular properties, accounting for the dressing effects of the surroundings, and then taking into account the local field effects. Several aspects of these calculations are tackled with the aim of monitoring the convergence of the χ((1)) and χ((2)) predictions with respect to experiment by accounting for the effects of (i) the dressing field within successive approximations, of (ii) the first-order ZPVA corrections, and of (iii) the geometry. With respect to the reference CCSD-based results, besides double hybrid functionals, the most reliable exchange-correlation functionals are LC-BLYP for the static χ((1)) and CAM-B3LYP (and M05-2X, to a lesser extent) for the dynamic χ((1)) but they strongly underestimate χ((2)). Double hybrids perform better for χ((2)) but not necessarily for χ((1)), and, moreover, their performances are much similar to MP2, which is known to slightly overestimate ß, with respect to high-level coupled-clusters calculations and, therefore, χ((2)). Other XC functionals with less HF exchange perform poorly with overestimations/underestimations of χ((1))/χ((2)), whereas the HF method leads to underestimations of both. The first-order ZPVA corrections, estimated at the B3LYP level, are usually small but not negligible. Indeed, after ZPVA corrections, the molecular polarizabilities and first hyperpolarizabilities increase by 2% and 5%, respectively, whereas their impact is magnified on the macroscopic responses with enhancements of χ((1)) by up to 5% and of χ((2)) by as much as 10%-12% at λ = 1064 nm. The geometry plays also a key role in view of predicting accurate susceptibilities, particularly for push-pull π-conjugated compounds such as MNA. So, the geometry optimized using periodic boundary conditions is characterized by an overestimated bond length alternation, which gives larger molecular properties and even larger macroscopic responses, because of the local field factor amplification effects. Our best estimates based on experimental geometries, charge dressing field, ZPVA correction, and CCSD molecular properties lead to an overestimation of χ((1)) by 12% in the static limit and 7% at λ = 1064 nm. For χ((2)), the difference, with respect to the experiment, is satisfactory and of the order of one standard deviation.

9.
J Chem Phys ; 139(11): 114105, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-24070277

ABSTRACT

In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

10.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 6): o1507, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21754873

ABSTRACT

The title compound, C(19)H(13)N(5)O(3), can be obtained from the corresponding α-amido-α-amino-nitrone in a reaction with biphenyl-2,2'-diamine. The amido-amidine core has distinctive geometrical parameters including: an outstandingly long Csp(2)-Csp(2) single bond of 1.5276 (13) Šand an amidine N-C-N angle of 130.55 (9)°. Intra-molecular N-H⋯O, N-H⋯N and C-H⋯O hydrogen bonds occur. In the crystal, mol-ecules form layers parallel to (001) via weak inter-molecular C-H⋯N inter-actions. The layers are linked via N-H⋯O hydrogen bonds and π-π inter-actions along [001] [benzene-pyridine centroid-centroid distance = 3.672 (2) Å].

SELECTION OF CITATIONS
SEARCH DETAIL
...