Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Sci Transl Med ; 16(728): eade2774, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170787

ABSTRACT

Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Cohesins , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Mutation/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Repair/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , DNA Damage
2.
Materials (Basel) ; 15(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36233913

ABSTRACT

In recent years, the demand for highly integrated and lightweight components has been rising sharply, especially in plastics processing. One strategy for weight-saving solutions is the development of conductive tracks and layouts directly on the polymer housing parts in order to be able to dispense with the system integration of additional printed circuit boards (PCB). This can be conducted very advantageously and flexibly with laser-based processes for functionalizing polymer surfaces. In this work, a three-step laser-based process for subsequent selective metallization is presented. Conventional injection molded components without special additives serve as the initial substrate. The Laser-Based Selective Activation (LSA) uses picosecond laser pulses to activate the plastic surface to subsequently deposit palladium. The focus is on determining the amount of deposited palladium in correlation to the laser and scan parameters. For the first time, the dependence of the metallization result on the accumulated laser fluence (Facc) is described. The treated polymer parts are characterized using optical and scanning electron microscopy as well as a contact-type profilometer.

3.
Trends Pharmacol Sci ; 43(5): 437-454, 2022 05.
Article in English | MEDLINE | ID: mdl-35331569

ABSTRACT

The production of a mature mRNA requires coordination of multiple processing steps, which ultimately control its content, localization, and stability. These steps include some of the largest macromolecular machines in the cell, which were, until recently, considered undruggable due to their biological complexity. Building from an expanded understanding of the underlying mechanisms that drive these processes, a new wave of therapeutics is seeking to target RNA processing. With a focus on impacting gene regulation at the RNA level, such modalities offer potential for sequence-specific resolution in drug design. Here, we review our current understanding of RNA-processing events and their role in gene regulation, with a focus on the therapeutic opportunities that have emerged within this landscape.


Subject(s)
Oligonucleotides, Antisense , RNA Processing, Post-Transcriptional , Gene Expression Regulation , Humans , Oligonucleotides, Antisense/therapeutic use , RNA/genetics , RNA, Messenger
4.
Cancer Discov ; 12(2): 522-541, 2022 02.
Article in English | MEDLINE | ID: mdl-34615655

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation. SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Dendritic Cells/metabolism , Myeloproliferative Disorders/genetics , Ribonucleoproteins/genetics , Apoptosis , Female , Gender Identity , Humans , Male , Mutation
5.
J Real Estate Financ Econ (Dordr) ; 64(4): 500-522, 2022.
Article in English | MEDLINE | ID: mdl-38624780

ABSTRACT

Using a large, non-student sample, we assess and differentiate between borrowers' Risk Aversion and Ambiguity Aversion levels and their willingness to pay to resolve a mortgage default settlement negotiation. Ambiguity Aversion is found to be negatively associated with willingness to pay for borrowers with high financial literacy in both the gain and loss domains, whereas personality traits matter more for borrowers with low financial literacy. This finding is important to policymakers in that they should adopt differential resolution strategies for defaulting borrowers based on these intervening variables.

6.
J Real Estate Financ Econ (Dordr) ; 65(2): 230-260, 2022.
Article in English | MEDLINE | ID: mdl-38624868

ABSTRACT

The Coronavirus Aid, Relief, and Economic Security (CARES) Act was passed in response to both the global pandemic's immediate negative and expected long-lasting impacts on the economy. Under the Act, mortgage borrowers are allowed to cease making payments if their income was negatively impacted by Covid-19. Importantly, borrowers were not required to demonstrate proof of impaction, either currently or retrospectively. Exploring the economic implications of this policy, this study uses an experimental design to first identify strategic forbearance incidence, and then to quantify where the forborne mortgage payment dollars were spent. Our results suggest strategic mortgage forbearance can be significantly reduced, saving taxpayers billions of dollars in potential losses, simply by requiring a 1-page attestation with lender recourse for borrowers wishing to engage in COVID-19 related mortgage payment cessation programs. Additionally, we demonstrate the use of these forborne mortgage payments range from enhancing the financial safety net for distressed borrowers by increasing precautionary savings, to buying necessities, to equity investing and debt consolidation.

7.
Appl Opt ; 60(8): 2118-2126, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33690306

ABSTRACT

Subsurface damage (SSD) induced during conventional manufacturing of optics contributes mainly to a reduction in the performance and quality of optics. In this paper, we propose the application of full-field optical coherence tomography (FF-OCT) as a high-resolution and nondestructive method for evaluation of SSD in optical substrates. Both ground and polished surfaces can be successfully imaged, providing a path to control SSD throughout the entire optics manufacturing process chain. Full tomograms are acquired for qualitative and quantitative analyses of both surface and SSD. The main requirements for the detection of SSD are addressed. Data processing allows the removal of low-intensity image errors and the automatic evaluation of SSD depths. OCT scans are carried out on destructively referenced glass samples and compared to existing predictive models, validating the obtained results. Finally, intensity projection methods and depth maps are applied to characterize crack morphologies. The experiments highlight differences in crack characteristics between optical glasses SF6 and HPFS7980 and illustrate that wet etching can enhance three-dimensional imaging of SSD with FF-OCT.

8.
J Immunol Res ; 2019: 4260987, 2019.
Article in English | MEDLINE | ID: mdl-31211147

ABSTRACT

Bone metastases are prevalent in many common cancers such as breast, prostate, and lung cancers, and novel therapies for treating bone metastases are needed. Human immune system-engrafted models are used in immuno-oncology (IO) studies for subcutaneous cancer cell or patient-derived xenograft implantations that mimic primary tumor growth. Novel efficacy models for IO compounds on bone metastases need to be established. The study was performed using CIEA NOG (NOG) mice engrafted with human CD34+ hematopoietic stem cells (huNOG) and age-matched immunodeficient NOG mice. Bone phenotyping was performed to evaluate baseline differences. BT-474 human breast cancer cells were inoculated into the tibia bone marrow, and cancer-induced bone changes were monitored by X-ray imaging. Bone content and volume were analyzed by dual X-ray absorptiometry and microcomputed tomography. Tumor-infiltrating lymphocytes (TILs) and the expression of immune checkpoint markers were analyzed by immunohistochemistry. Bone phenotyping showed no differences in bone architecture or volume of the healthy bones in huNOG and NOG mice, but the bone marrow fat was absent in huNOG mice. Fibrotic areas were observed in the bone marrow of some huNOG mice. BT-474 tumors induced osteoblastic bone growth. Bone lesions appeared earlier and were larger, and bone mineral density was higher in huNOG mice. huNOG mice had a high number of human CD3-, CD4-, and CD8-positive T cells and CD20-positive B cells in immune-related organs. A low number of TILs and PD-1-positive cells and low PD-L1 expression were observed in the BT-474 tumors at the endpoint. This study reports characterization of the first breast cancer bone growth model in huNOG mice. BT-474 tumors represent a "cold" tumor with a low number of TILs. This model can be used for evaluating the efficacy of combination treatments of IO therapies with immune-stimulatory compounds or therapeutic approaches on bone metastatic breast cancer.


Subject(s)
Bone Development , Bone and Bones/immunology , Bone and Bones/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Immune System/immunology , Immune System/metabolism , Osteoblasts/metabolism , Animals , Biomarkers , Bone Development/immunology , Bone Neoplasms/diagnosis , Bone Neoplasms/immunology , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Humans , Immunohistochemistry , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Myeloid Cells/immunology , Myeloid Cells/metabolism , X-Ray Microtomography
10.
Nat Commun ; 10(1): 137, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635584

ABSTRACT

Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1, BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL (BCL2L1-encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Minor Histocompatibility Antigens/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Splicing/drug effects , bcl-X Protein/genetics , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Synergism , Epoxy Compounds/pharmacology , Female , Humans , Lung Neoplasms/genetics , Macrolides/pharmacology , Melanoma/genetics , Mice , Mice, Nude , RNA Interference , RNA Splicing/genetics , RNA, Small Interfering/genetics , Spliceosomes/drug effects , Spliceosomes/genetics , Exome Sequencing , Xenograft Model Antitumor Assays
11.
Nat Commun ; 9(1): 5378, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568163

ABSTRACT

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins , Cell Differentiation , Chromatin/metabolism , Epigenesis, Genetic , HL-60 Cells , Hematopoiesis , Humans , K562 Cells , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , RNA Splicing
12.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282833

ABSTRACT

The identification of targetable vulnerabilities in the context of therapeutic resistance is a key challenge in cancer treatment. We detected pervasive aberrant splicing as a characteristic feature of chronic lymphocytic leukemia (CLL), irrespective of splicing factor mutation status, which was associated with sensitivity to the spliceosome modulator, E7107. Splicing modulation affected CLL survival pathways, including members of the B cell lymphoma-2 (BCL2) family of proteins, remodeling antiapoptotic dependencies of human and murine CLL cells. E7107 treatment decreased myeloid cell leukemia-1 (MCL1) dependence and increased BCL2 dependence, sensitizing primary human CLL cells and venetoclax-resistant CLL-like cells from an Eµ-TCL1-based adoptive transfer murine model to treatment with the BCL2 inhibitor venetoclax. Our data provide preclinical rationale to support the combination of venetoclax with splicing modulators to reprogram apoptotic dependencies in CLL for treating venetoclax-resistant CLL cases.


Subject(s)
Alternative Splicing/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Epoxy Compounds/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrolides/pharmacology , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Epoxy Compounds/therapeutic use , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Macrolides/therapeutic use , Male , Mice , Mice, Transgenic , Middle Aged , Mitochondria/drug effects , Mitochondria/pathology , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphoproteins/genetics , Primary Cell Culture , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA Splicing Factors/genetics , Spliceosomes/drug effects , Spliceosomes/metabolism , Sulfonamides/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use
13.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30107174

ABSTRACT

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Subject(s)
Mutation , Neoplasms/genetics , Spliceosomes , Animals , Caspase 8/genetics , Female , Hematopoiesis , Humans , Male , Mice , Mice, Inbred C57BL , NF-kappa B/physiology , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/genetics
14.
Invest Ophthalmol Vis Sci ; 59(8): 3503-3510, 2018 07 02.
Article in English | MEDLINE | ID: mdl-30025093

ABSTRACT

Purpose: To determine if inner retinal layer reflectivity in eyes with acute central retinal vein occlusion (CRVO) correlates with visual acuity at 12 months. Methods: Macular optical coherence tomography (OCT) scans were obtained from 22 eyes of 22 patients with acute CRVO. Optical intensity ratios (OIRs), defined as the mean OCT reflectivity of the inner retinal layers normalized to the mean reflectivity of the RPE, were measured from the presenting and 1-month OCT image by both manual measurements of grayscale B-scans and custom algorithmic measurement of raw OCT volume data. OIRs were assessed for association with final visual outcome. Cohort subgroup division for analysis was determined statistically. Results: Eyes with poorer final visual acuity (≥20/70) at 1 year were more likely to have a higher ganglion cell layer OIR than eyes with better final visual acuity (<20/70) at 1 month (manually: 0.591 to 0.735, P = 0.006, algorithmically: 0.663 to 0.799, P = 0.014). At 1 month, eyes with a poorer final visual acuity demonstrated a higher variance of OIR measurements (algorithmically: 0.087 vs. 0.160, P = 0.002) per scan than eyes with better final visual acuity. Conclusions: In acute CRVO, ganglion cell layer changes at 1 month, including increased reflectivity and increased heterogeneity of reflectivity signal as expressed as OIR and OIR variance, were associated with a poorer visual prognosis at 1 year. Technique calibration with larger sample sizes and automated integration into OCT platforms will be necessary to determine if OIR can be a clinically useful prognostic tool.


Subject(s)
Retinal Ganglion Cells/pathology , Retinal Pigment Epithelium/pathology , Retinal Vein Occlusion/physiopathology , Vision Disorders/physiopathology , Visual Acuity/physiology , Acute Disease , Aged , Aged, 80 and over , Angiogenesis Inhibitors/therapeutic use , Female , Humans , Intravitreal Injections , Male , Middle Aged , Retinal Pigment Epithelium/diagnostic imaging , Retinal Vein Occlusion/diagnostic imaging , Retinal Vein Occlusion/drug therapy , Retrospective Studies , Tomography, Optical Coherence/methods , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vision Disorders/diagnostic imaging , Vision Disorders/drug therapy
15.
Cell Rep ; 23(1): 282-296.e4, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29617667

ABSTRACT

Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis.


Subject(s)
Mutation Rate , Neoplasms/genetics , RNA Splicing Factors/genetics , Cell Line, Tumor , Genes, Tumor Suppressor , Humans , Loss of Function Mutation , Neoplasms/classification , Oncogenes , RNA Splicing/genetics
16.
Cancer Cell ; 33(3): 386-400.e5, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29478914

ABSTRACT

To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.


Subject(s)
CRISPR-Cas Systems/drug effects , Endoribonucleases/drug effects , Leukemia/drug therapy , Muscular Atrophy, Spinal/drug therapy , Quinazolines/pharmacology , Animals , CRISPR-Cas Systems/genetics , Cell Line , Endoribonucleases/genetics , Endoribonucleases/metabolism , Humans , Leukemia/genetics , Male , Metabolic Networks and Pathways/drug effects , Mice, Inbred C57BL , Muscular Atrophy, Spinal/genetics , RNA Precursors/drug effects , RNA Precursors/genetics , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Messenger/genetics
17.
Circ Heart Fail ; 11(2): e004228, 2018 02.
Article in English | MEDLINE | ID: mdl-29449368

ABSTRACT

BACKGROUND: Inflammatory cardiomyopathy (infl-CMP) is characterized by increased cardiac inflammation in the absence of viruses, ischemia, valvular disease, or other apparent causes. Studies addressing the efficacy of immunosuppressive therapy in patients with infl-CMP are sparse. This study retrospectively investigates whether immunosuppressive agents on top of heart failure therapy according to current guidelines improves cardiac function and long-term outcome in patients with infl-CMP. METHODS AND RESULTS: Within the Innsbruck and Maastricht Cardiomyopathy Registry, a total of 209 patients fulfilled the criteria for infl-CMP using endomyocardial biopsy (≥14 infiltrating inflammatory cells/mm2). A total of 110 (53%) patients received immunosuppressive therapy and 99 (47%) did not. To correct for potential selection bias, 1:1 propensity score matching was used on all significant baseline parameters, resulting in a total of 90 patients per group. Baseline characteristics did not significantly differ between both patient groups, reflecting optimal propensity score matching. After a median follow-up of 31 (15-47) months, immunosuppressive therapy resulted in an improved long-term outcome (eg, heart transplantation-free survival) as compared with standard heart failure therapy alone (Log-rank P=0.043; hazard ratio, 0.34 [95% CI, 0.17-0.92]) and in a significant larger increase of left ventricular ejection fraction after a mean of 12 months follow-up, as compared with patients receiving standard heart failure treatment only (12.2% versus 7.3%, respectively; P=0.036). CONCLUSIONS: To conclude, this study suggests that immunosuppressive therapy in infl-CMP patients results in an improved heart transplantation-free survival as compared with standard heart failure therapy alone, underscoring the urgent need for a large prospective multicenter trial.


Subject(s)
Cardiomyopathies/drug therapy , Cardiomyopathies/virology , Heart Failure/drug therapy , Immunosuppressive Agents/pharmacology , Adult , Aged , Cardiomyopathies/pathology , Female , Heart Failure/diagnosis , Heart Failure/virology , Heart Transplantation/adverse effects , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Stroke Volume/physiology , Viruses/pathogenicity
18.
Nat Med ; 24(4): 497-504, 2018 05.
Article in English | MEDLINE | ID: mdl-29457796

ABSTRACT

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor-encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Piperazines/pharmacology , Pyridines/pharmacology , RNA Splicing/genetics , Small Molecule Libraries/therapeutic use , Spliceosomes/genetics , Administration, Oral , Animals , Base Sequence , Humans , Introns/genetics , K562 Cells , Leukemia/genetics , Leukemia/pathology , Mice , Mutation , Neoplasms/pathology , Piperazines/administration & dosage , Pyridines/administration & dosage , RNA Splicing/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Small Molecule Libraries/pharmacology , Tumor Burden , Xenograft Model Antitumor Assays
19.
Sci Rep ; 7(1): 5568, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717182

ABSTRACT

Cancer cells can have different patterns of exon usage of individual genes when compared to normal tissue, suggesting that alternative splicing may play a role in shaping the tumor phenotype. The discovery and identification of gene variants has increased dramatically with the introduction of RNA-sequencing technology, which enables whole transcriptome analysis of known, as well as novel isoforms. Here we report alternative splicing and transcriptional events among subtypes of invasive ductal carcinoma in The Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) cohort. Alternative exon usage was widespread, and although common events were shared among three subtypes, ER+ HER2-, ER- HER2-, and HER2+, many events on the exon level were subtype specific. Additional RNA-seq analysis was carried out in an independent cohort of 43 ER+ HER2- and ER- HER2- primary breast tumors, confirming many of the exon events identified in the TCGA cohort. Alternative splicing and transcriptional events detected in five genes, MYO6, EPB41L1, TPD52, IQCG, and ACOX2 were validated by qRT-PCR in a third cohort of 40 ER+ HER2- and ER- HER2- patients, showing that these events were truly subtype specific.


Subject(s)
Alternative Splicing , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Gene Expression Profiling/methods , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Cohort Studies , Databases, Genetic , Exons , Female , Gene Expression Regulation, Neoplastic , Humans , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Sequence Analysis, RNA/methods
20.
Nat Commun ; 8(1): 103, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740126

ABSTRACT

Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic "immuno-oncogenes" that modulate the immune microenvironment of cancer.Muscle-invasive bladder cancer (MIBC) is a potentially lethal disease. Here the authors characterize diverse genetic alterations in MIBC that convergently lead to constitutive activation of PPARgamma/RXRalpha and result in immunosurveillance escape by inhibiting CD8+ T-cell recruitment.


Subject(s)
Immune Evasion/immunology , Monitoring, Immunologic , PPAR gamma/immunology , Retinoid X Receptor alpha/immunology , Urinary Bladder Neoplasms/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression Profiling/methods , HCT116 Cells , Humans , Immunoblotting , Immunotherapy/methods , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Mice , Microscopy, Fluorescence , Mutation/immunology , Neoplasm Invasiveness , PPAR gamma/chemistry , PPAR gamma/genetics , Protein Multimerization/immunology , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...