Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Inform ; 189: 105506, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38820647

ABSTRACT

OBJECTIVE: Observational studies using electronic health record (EHR) databases often face challenges due to unspecific clinical codes that can obscure detailed medical information, hindering precise data analysis. In this study, we aimed to assess the feasibility of refining these unspecific condition codes into more specific codes in a Dutch general practitioner (GP) EHR database by leveraging the available clinical free text. METHODS: We utilized three approaches for text classification-search queries, semi-supervised learning, and supervised learning-to improve the specificity of ten unspecific International Classification of Primary Care (ICPC-1) codes. Two text representations and three machine learning algorithms were evaluated for the (semi-)supervised models. Additionally, we measured the improvement achieved by the refinement process on all code occurrences in the database. RESULTS: The classification models performed well for most codes. In general, no single classification approach consistently outperformed the others. However, there were variations in the relative performance of the classification approaches within each code and in the use of different text representations and machine learning algorithms. Class imbalance and limited training data affected the performance of the (semi-)supervised models, yet the simple search queries remained particularly effective. Ultimately, the developed models improved the specificity of over half of all the unspecific code occurrences in the database. CONCLUSIONS: Our findings show the feasibility of using information from clinical text to improve the specificity of unspecific condition codes in observational healthcare databases, even with a limited range of machine-learning techniques and modest annotated training sets. Future work could investigate transfer learning, integration of structured data, alternative semi-supervised methods, and validation of models across healthcare settings. The improved level of detail enriches the interpretation of medical information and can benefit observational research and patient care.

2.
J Am Med Inform Assoc ; 30(12): 1973-1984, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37587084

ABSTRACT

OBJECTIVE: This work aims to explore the value of Dutch unstructured data, in combination with structured data, for the development of prognostic prediction models in a general practitioner (GP) setting. MATERIALS AND METHODS: We trained and validated prediction models for 4 common clinical prediction problems using various sparse text representations, common prediction algorithms, and observational GP electronic health record (EHR) data. We trained and validated 84 models internally and externally on data from different EHR systems. RESULTS: On average, over all the different text representations and prediction algorithms, models only using text data performed better or similar to models using structured data alone in 2 prediction tasks. Additionally, in these 2 tasks, the combination of structured and text data outperformed models using structured or text data alone. No large performance differences were found between the different text representations and prediction algorithms. DISCUSSION: Our findings indicate that the use of unstructured data alone can result in well-performing prediction models for some clinical prediction problems. Furthermore, the performance improvement achieved by combining structured and text data highlights the added value. Additionally, we demonstrate the significance of clinical natural language processing research in languages other than English and the possibility of validating text-based prediction models across various EHR systems. CONCLUSION: Our study highlights the potential benefits of incorporating unstructured data in clinical prediction models in a GP setting. Although the added value of unstructured data may vary depending on the specific prediction task, our findings suggest that it has the potential to enhance patient care.


Subject(s)
General Practitioners , Humans , Electronic Health Records , Language , Algorithms , Software , Natural Language Processing
3.
J Am Med Inform Assoc ; 29(7): 1292-1302, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35475536

ABSTRACT

OBJECTIVE: This systematic review aims to assess how information from unstructured text is used to develop and validate clinical prognostic prediction models. We summarize the prediction problems and methodological landscape and determine whether using text data in addition to more commonly used structured data improves the prediction performance. MATERIALS AND METHODS: We searched Embase, MEDLINE, Web of Science, and Google Scholar to identify studies that developed prognostic prediction models using information extracted from unstructured text in a data-driven manner, published in the period from January 2005 to March 2021. Data items were extracted, analyzed, and a meta-analysis of the model performance was carried out to assess the added value of text to structured-data models. RESULTS: We identified 126 studies that described 145 clinical prediction problems. Combining text and structured data improved model performance, compared with using only text or only structured data. In these studies, a wide variety of dense and sparse numeric text representations were combined with both deep learning and more traditional machine learning methods. External validation, public availability, and attention for the explainability of the developed models were limited. CONCLUSION: The use of unstructured text in the development of prognostic prediction models has been found beneficial in addition to structured data in most studies. The text data are source of valuable information for prediction model development and should not be neglected. We suggest a future focus on explainability and external validation of the developed models, promoting robust and trustworthy prediction models in clinical practice.


Subject(s)
Machine Learning , Prognosis
4.
J Am Med Inform Assoc ; 29(5): 983-989, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35045179

ABSTRACT

OBJECTIVES: This systematic review aims to provide further insights into the conduct and reporting of clinical prediction model development and validation over time. We focus on assessing the reporting of information necessary to enable external validation by other investigators. MATERIALS AND METHODS: We searched Embase, Medline, Web-of-Science, Cochrane Library, and Google Scholar to identify studies that developed 1 or more multivariable prognostic prediction models using electronic health record (EHR) data published in the period 2009-2019. RESULTS: We identified 422 studies that developed a total of 579 clinical prediction models using EHR data. We observed a steep increase over the years in the number of developed models. The percentage of models externally validated in the same paper remained at around 10%. Throughout 2009-2019, for both the target population and the outcome definitions, code lists were provided for less than 20% of the models. For about half of the models that were developed using regression analysis, the final model was not completely presented. DISCUSSION: Overall, we observed limited improvement over time in the conduct and reporting of clinical prediction model development and validation. In particular, the prediction problem definition was often not clearly reported, and the final model was often not completely presented. CONCLUSION: Improvement in the reporting of information necessary to enable external validation by other investigators is still urgently needed to increase clinical adoption of developed models.


Subject(s)
Models, Statistical , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...