Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; 37(1): 100358, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871652

ABSTRACT

Intraductal oncocytic papillary neoplasms (IOPNs) are distinct from intraductal papillary mucinous neoplasms based on characteristic morphologic and genetic features represented by fusion genes involving PRKACA or PRKACB (PRKACA/B). However, pancreatic and biliary tumors with partial oncocytic features are often encountered clinically, and their molecular features are yet to be clarified. This study included 80 intraductal papillary neoplasms: 32 tumors with mature IOPN morphology (typical), 28 with partial or subclonal oncocytic features (atypical), and 20 without oncocytic features (control). We analyzed PRKACA/B fusion genes, including ATP1B1::PRKACA, DNAJB1::PRKACA, and ATP1B1::PRKACB, by reverse-transcription PCR; mRNA expression of fusion genes and nonrearranged PRKACA/B genes by quantitative reverse-transcription PCR; mutations in KRAS, BRAF, and GNAS by targeted sequencing or droplet digital PCR; and the expression of cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunits α (PRKACA) and ß (PRKACB), phosphorylated cAMP response element-binding protein, and aberrations of p16, p53, SMAD4, STK11, and ß-catenin by immunohistochemistry. PRKACA/B fusion genes were detected in 100% (32/32) of typical, 46% (13/28) of atypical, and 0% (0/20) of control (P < .05). Expression of PRKACA, PRKACB, and phosphorylated cAMP response element-binding protein was upregulated in neoplasms with PRKACA/B fusion genes (P < .05). mRNA expression of the PRKACA/B fusion genes and protein expression of PRKACA or PRKACB tended to be higher in typical than in atypical cases (mRNA, P = .002; protein expression, P = .054). In some atypical neoplasms with mixed subtypes, PRKACA/B fusion genes were superimposed exclusively on oncocytic components. Typical IOPNs harbored fewer KRAS and GNAS mutations than control samples and fewer alterations in p53 and STK11 than atypical samples (P < .05). In conclusion, PRKACA/B fusion genes not only are the characteristic drivers of IOPNs but also play a crucial role in the development of subclonal oncocytic neoplasms. Moreover, oncocytic morphology is strongly associated with upregulation of PRKACA/B, which may provide clues for potential therapeutic options.


Subject(s)
Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Protein Kinases/genetics , Catalytic Domain , Cyclic AMP Response Element-Binding Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/pathology , Chromosome Aberrations , Adenocarcinoma, Mucinous/pathology , Gene Rearrangement , RNA, Messenger , Carcinoma, Pancreatic Ductal/pathology , HSP40 Heat-Shock Proteins/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics
2.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1224-1231, 2018 12.
Article in English | MEDLINE | ID: mdl-30291898

ABSTRACT

Hydrolysis of the triphosphate moiety of ATP, catalyzed by myosin, induces alterations in the affinity of the myosin heads for actin filaments via conformational changes, thereby causing motility of the actomyosin complexes. To elucidate the contribution of the triphosphate group attached to adenosine, we examined the enzymatic activity of heavy meromyosin (HMM) with actin filaments for inorganic tripolyphosphate (3PP) using a Malachite green method and evaluated using fluorescence microscopy the effects of 3PP on actin filament motility on HMM-coated glass slides. In the presence of MgCl2, HMM hydrolyzed 3PP at a maximum rate of 0.016 s-1 HMM-1, which was four times lower than the hydrolysis rate of ATP. Tetrapolyphosphate (4PP) was hydrolyzed at a rate similar to that of 3PP hydrolysis. The hydrolysis rates of 3PP and 4PP were enhanced by roughly 10-fold in the presence of actin filaments. In motility assays, the presence of polyphosphates did not lead to the sliding movement of actin filaments. Moreover, in the presence of ATP at low concentrations, the sliding velocity of actin filaments decreased as the concentration of added polyphosphate increased, indicating a competitive binding of polyphosphate to myosin heads with ATP. These results suggested that the energy produced by standalone triphosphate hydrolysis did not induce the unidirectional motion of actomyosin and that the link between triphosphate and adenosine was crucial for motility.


Subject(s)
Actin Cytoskeleton/metabolism , Myosin Subfragments/metabolism , Polyphosphates/metabolism , Actin Cytoskeleton/chemistry , Biocatalysis , Hydrolysis , Magnesium Chloride/chemistry , Microscopy, Fluorescence , Myosin Subfragments/chemistry , Polyphosphates/chemistry , Protein Binding , Rosaniline Dyes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...